# Modbus IoT Gateway BL101





# BL101 User Manual

Revision: V1.0

Issue Date: 2021-6-1

King Pigeon Communication Co., Ltd

Website: www.iot-solution.com



-BL101

#### **Preface**

Thanks for choosing King Pigeon Modbus IOT Gateway BL101. Reading this manual with full attention will help you quickly learn device functions and operation methods.

#### Copyright

This user manual is owned by King Pigeon Communication Co., Ltd. No one is authorized to copy, distribute or forward any part of this document without written approval of King Pigeon. Any violation will be subject to legal liability.

#### Disclaimer

This document is designed for assisting user to better understand the device. As the described device BL101 is under continuous improvement, this manual may be updated or revised from time to time without prior notice. This Modbus Gateway is mainly used for industrial data transmission over Ethernet or 4G network. Please follow the instructions in the manual. Any damages caused by wrong operation will be beyond warranty.

#### **Revision History**

| Revision Date     | Version | Description     | Owner |
|-------------------|---------|-----------------|-------|
| June 1, 2021 V1.0 |         | Initial Release | HYQ   |
|                   |         |                 |       |
|                   |         |                 |       |

-BL101

# Content

| 1 Brief Introduction to Device              | 7  |
|---------------------------------------------|----|
| 1.1 General Description                     | 7  |
| 1.2 Application Diagram                     | 8  |
| 1.3 Packing List                            | 8  |
| 1.4 Features                                | 11 |
| 1.5 Technical Parameters                    | 12 |
| 1.6 Model Selection                         | 14 |
| 2 Hardware Introduction                     | 14 |
| 2.1 Outline Dimension                       | 14 |
| 2.2 Power Source Input                      | 15 |
| 2.3 SIM Card and SD Card Slots              | 16 |
| 2.4 Program Debugging & Upgrading Interface | 16 |
| 2.5 Device Grounding                        | 16 |
| 2.6 4G Antenna                              | 17 |
| 2.7 LED Indicator                           | 17 |
| 2.8 RESET Button                            | 18 |
| 2.9 COM & Power Output Port                 | 18 |
| 2.10 WAN & LAN Port                         | 19 |
| 3 Device Mounting                           | 19 |
| 3.1 Wall-Mounting                           | 19 |
| 3.2 DIN Rail Mounting                       | 20 |
| 4 Configuration Software Introduction       | 20 |
| 4.1 Login to Configuration Software         | 20 |
| 4.1.1 Open Configuration Software           | 20 |
| 4.1.2 Search for Device                     | 21 |
| 4.1.3 Connect Gateway Device                | 22 |
| 4.2 Configuration Software Introduction     | 23 |



| 4.2.1 Syst | tem Function                      | 23 |
|------------|-----------------------------------|----|
| 4.2.2 CO   | M Port Introduction               | 25 |
| 4.2.2.1    | COM Port Configuration            | 25 |
| 4.2.2.2    | Add COM Port Devices              | 26 |
| 4.2.2.3    | Add COM Port Device Datapoints    | 27 |
| 4.2.3 LAN  | Port Introduction                 | 29 |
| 4.2.3.1    | LAN Port Attributes Configuration | 29 |
| 4.2.3.2    | Add LAN Port Device               | 30 |
| 4.2.3.3    | Add LAN Port Device Datapoints    | 32 |
| 4.2.4 WAI  | N Port Introduction               | 32 |
| 4.2.4.1    | WAN Port Attributes Configuration | 32 |
| 4.2.4.2    | Add WAN Port Device               | 33 |
| 4.2.4.3    | Add WAN Port Device Datapoints    | 34 |
| 4.2.5 4G   | Cellular Network Introduction     | 34 |
| 4.2.6 Alar | ms and Events Configuration       | 35 |
| 4.2.6.1    | Alarm Points Configuration        | 35 |
| 4.2.6.2    | Alarm Event Configuration         | 36 |
| 4.2.7 Task | k Plan Configuration              | 38 |
| 4.2.8 Data | a Service                         | 39 |
| 4.2.8.1    | Transparent Transmission          | 39 |
| 4.2.8.2    | Modbus RTU to Modbus TCP          | 40 |
| 4.2.8.3    | Modbus TCP Server                 | 42 |
| 4.2.8.4    | OPC UA                            | 42 |
| 4.2.9 Clou | ud Platform Connection            | 43 |
| 4.2.9.1    | MQTT Client One                   | 44 |
| 4.2.9.2    | MQTT Client Two                   | 45 |
| 4.2.9.3    | Alibaba Cloud                     | 46 |
| 4.2.9.4    | HUAWEI Cloud                      | 47 |
| 4.2.9.5    | AWS (Amazon Web Service) Cloud    | 49 |
| 4.2.9.6    | King Pigeon Cloud via MQTT        | 52 |
|            |                                   |    |

# KING PIGEON

## **Modbus to MQTT IoT Gateway**

| 4.2.9.7 King Pigeon Cloud via Modbus                 | .53  |
|------------------------------------------------------|------|
| 5 BL101 Gateway Application Example                  | . 54 |
| 5.1 Device Connecting Diagram                        | . 55 |
| 5.2 Configuration Software Setting                   | .55  |
| 5.2.1 Add Devices and Datapoints                     | .56  |
| 5.2.1.1 COM Port Configuration                       | . 56 |
| 5.2.1.2 Add M140T to COM Port                        | .57  |
| 5.2.1.3 Add M140T Datapoints                         | . 58 |
| 5.2.1.4 LAN Port Configuration                       | 59   |
| 5.2.1.5 Add LAN Port Device S475                     | 60   |
| 5.2.1.6 Add S475 Datapoint                           | . 61 |
| 5.2.2 M140T & S475 Data Uploading to Clouds          | 62   |
| 5.2.2.1 Modbus TCP Server Configuration              | 62   |
| 5.2.2.2 View Data with KEPServerEX 6                 | 62   |
| 5.2.2.3 OPC UA Configuration                         | 63   |
| 5.2.2.4 View Data with KEPServerEX 6                 | 64   |
| 5.2.2.5 Alibaba Cloud Configuration                  | . 65 |
| 5.2.2.6 View Data from Alibaba Cloud                 | 66   |
| 5.2.2.7 HUAWEI Cloud Configuration                   | . 67 |
| 5.2.2.8 View Data from HUAWEI Cloud                  | .69  |
| 5.2.2.9 AWS Cloud Configuration                      | . 70 |
| 5.2.2.10 View Data from AWS                          | . 71 |
| 5.2.2.11 King Pigeon Cloud via Modbus Configuration  | . 72 |
| 5.2.2.12 View Data from King Pigeon Cloud via Modbus | . 73 |
| 5.2.2.13 King Pigeon Cloud via MQTT Configuration    | .74  |
| 5.2.2.14 View Data from King Pigeon Cloud via MQTT   | . 75 |
| 5.2.2.15 King Pigeon Cloud MQTT Message Format       | .75  |
| 6 Firmware Upgrading                                 | 78   |
| 7 Warranty Term                                      | . 78 |
| 8 Technical Support                                  | 78   |

# KING PIGEON

## **Modbus to MQTT IoT Gateway**

| 9 / | Appendix 1: AWS Cloud Configuration        | 78 |
|-----|--------------------------------------------|----|
|     | 9.1 Setup your AWS account and Permissions | 78 |
|     | 9.2 Create Resources in AWS IoT            | 78 |
|     | 9.3 Get the AWS IoT Endpoint               | 79 |
|     | 9.4 Get the AWS Root CA                    | 79 |



#### 1 Brief Introduction to Device

#### 1.1 General Description

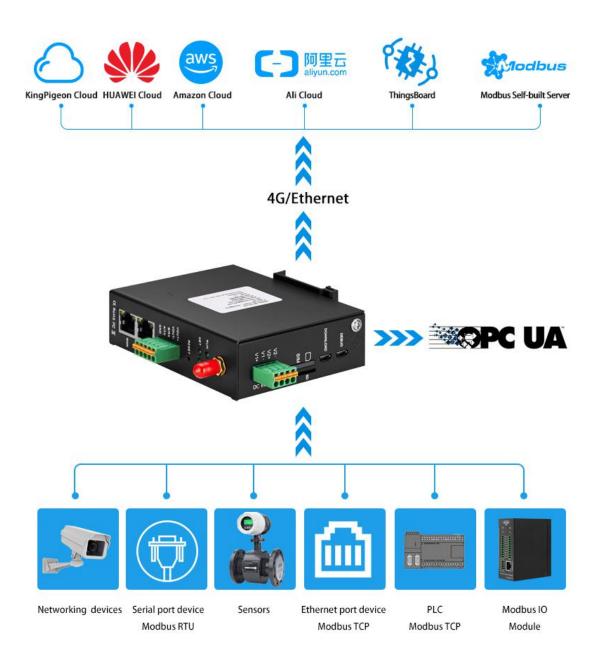
Developed on embedded Linux operation system for robust stability, BL101 is an innovative gateway that converts Modbus to OPC UA / MQTT protocol.

It's equipped with 1RS232/RS485(default RS485) serial port, 2 power source inputs, 1 power output, 2 Ethernet ports and 2 USB ports. Both SIM and SD card slots are available. Network can be connected either through 4G cellular or Ethernet for high transfer speed and low latency.

On downstream it supports Modbus RTU Master and Modbus TCP Master. on upstream, it supports Modbus TCP, MQTT, OPC UA, HUAWEI Cloud, Alibaba Cloud, AWS Cloud, King Pigeon Cloud, etc. Users can connect various devices to cloud, SCADA, OPC UA and MES system with this gateway. Multiple platforms and host computers can be online simultaneously.

This gateway supports TSL\SSL encryption for data security. It has router function to provide network for other devices. More devices can be connected with cascaded switch.

With complete functions and superior quality, it can be used in many industrial applications for remote monitoring and control.








# 1.2 Application Diagram

# **BL101 APPLICATION**



# 1.3 Packing List

Before operating the device, please make sure all below parts are in the package



1XBL101 Gateway



1x 4PIN 3.5mm terminal for power input



1x RS485/232 5PIN 3.5mm terminal for power output



1 x 4G SMA Cellular Network Antenna




2 x Wall-mounting Clip Kit

Page **9 of 79** 



-BL101



• 1 x DIN Rail Clip Kit



- 1 x User Manual (Softcopy in PDF format)
   (Note: Please scan QR code to download)
- 1 x Data Card Picking PIN



1 x Product Qualification Certificate



1 x Warranty Card



Note: If any of the above items are missing, please contact King Pigeon Sales team.





#### 1.4 Features

- Downlink: support Modbus RTU Master, Modbus TCP Master
  Uplink: support Modbus TCP, MQTT, OPC UA, HUAWEI Cloud, Alibaba Cloud,
  AWS Cloud, ThingsBoard Cloud, King Pigeon Cloud, etc
- Support 9-36V DC power supply with terminal connection. 2 channels of power input redundancy design with inverse connection protection. Either channel can be selected for power input.
- > 1 power output channel. Output voltage is the same as power input voltage
- > 1 RS485 (can be RS232 if required)
- Baud rate 2400bps-115200bps, stop bit supports 1, 2 bits, data bit supports 7, 8 bits.
  Parity supports None, Odd, Even.
- Support 2 RJ45 Ethernet connection, 1WAN and 1LAN. Data of equipment connected to LAN, WAN or cascade switch can be collected. Both network link and rate indicators are available. Built-in isolation transformer for up to 2KV electromagnetic insulation.
- > Support POE PD( Powered Device) for saving wiring cost (Optional function)
- > Support TSL\SSL encryption for data security
- > Support router function to provide network for other devices
- Support 4G network with APN setting. Ethernet network will be used first if it's available. If Ethernet is disconnected, it will shift to 4G cellular network automatically.
- > Support Modbus RTU to Modbus TCP, transparent transmission
- Support returning to factory setting (Long pressing RESET until RUN indicator is off) to avoid parameter setting error
- Support hardware and software watchdog for high reliability
- Metal case with IP30 protection grade. Safety isolation between metal case and system, especially suitable for industrial site applications
- Compact size: 30mm\*83mm\*110mm; Support wall-mounting and DIN rail mounting

-BL101

#### 1.5 Technical Parameters

| Item            | Parameter       | Description                                        |  |  |
|-----------------|-----------------|----------------------------------------------------|--|--|
| Dower           | Input Voltage   | DC 9∼36V                                           |  |  |
| Power<br>Source | Consumption     | Normal 85mA@12V, Max 117mA@12V                     |  |  |
| Source          | Wiring          | Support inverse connection protection              |  |  |
|                 | Interface Spec  | 2 x RJ45, 10/100Mbps, Adaptive MDI/MDIX。           |  |  |
| Network         |                 | ESD ±16kV(Contact); ±18kV(Air)                     |  |  |
| Interface       | Port Protection | EFT 40A (5/50ns)                                   |  |  |
|                 |                 | Lightening 6A (8/20µs)                             |  |  |
|                 | Serial Port     | 1 x RS232/RS485 (Default is RS485, Optional RS232) |  |  |
|                 | Baud Rate       | 2400bps-115200bps                                  |  |  |
|                 | Data Bit        | 7,8                                                |  |  |
| Serial Port     | Parity Bit      | None, Even, Odd                                    |  |  |
|                 | Stop Bit        | 1, 2                                               |  |  |
|                 | Port Protection | ESD ±8kV (Contact); ±15kV(Air);                    |  |  |
|                 | Port Protection | EFT 2KV, 40A (5/50ns) 。                            |  |  |
| Power Output    | Output Voltage  | 1 channel 9∼36 V DC (Equal to input power voltage) |  |  |
|                 | Qty             | 1                                                  |  |  |
| SIM Card Slot   | Spec            | Drawer design, Support 1.8V/3V SIM/UIM card (NANO) |  |  |
|                 | Protection      | Inbuilt 15KV ESD protection                        |  |  |
| SD Card Slot    |                 |                                                    |  |  |
| (Reserved       |                 | Reserved for future development                    |  |  |
| function)       |                 |                                                    |  |  |
|                 | Qty             | 1* program downloading+1*program debugging         |  |  |
| USB Port        | Spec            | Micro USB OTG                                      |  |  |
|                 | Protection      | Over Current Protection                            |  |  |
|                 | Antenna Qty     | 1                                                  |  |  |
|                 | Antenna Type    | SMA                                                |  |  |
|                 |                 | GSM/EDGE:900,1800MHz                               |  |  |
|                 | L-E version     | WCDMA:B1,B5,B8                                     |  |  |
| 4G              | L-E VELSION     | FDD-LTE:B1,B3,B5,B7,B8,B20                         |  |  |
| (Optional)      |                 | TDD-LTE:B38,B40,B41                                |  |  |
|                 |                 | GSM/EDGE:900,1800MHz                               |  |  |
|                 | L-CE version    | WCDMA:B1,B8                                        |  |  |
|                 | L-CE VEISION    | TD-SCDMA:B34,B39                                   |  |  |
|                 |                 | FDD-LTE:B1,B3,B8                                   |  |  |



|               |               | TDD-LTE:B38,B39,B40,B41                              |  |
|---------------|---------------|------------------------------------------------------|--|
|               | L-A version   | WCDMA:B2,B4,B5                                       |  |
|               |               | FDD-LTE:B2,B4,B12                                    |  |
|               |               | GSM/EDGE:850,900,1800MHz                             |  |
|               |               | WCDMA:B1,B2,B5,B8                                    |  |
|               | L-AU version  | FDD-LTE:B1,B3,B4,B5,B7,B8,B28                        |  |
|               |               | TDD-LTE:B40                                          |  |
|               |               | WCDMA:B2,B4,B5                                       |  |
|               | L-AF version  | FDD-LTE:B2,B4,B5,B12,B13,B14,B66,B71                 |  |
|               |               | GSM:900,1800                                         |  |
|               | CAT-1 version | FDD-LTE:B1,B3,B5,B8                                  |  |
|               |               | TDD-LTE:B34,B38,B39,B40,B41                          |  |
|               |               | Steady light if device is powered on                 |  |
|               | RUN           | Flickering if device is running                      |  |
|               |               | Off if device is not running                         |  |
|               |               | Flickering if communication is over Ethernet network |  |
|               | NET           | Steady light if communication is over 4G network     |  |
| Indicator     |               | Off if no data communication                         |  |
|               | TXD           | Flickering if device is transmitting data            |  |
|               |               | Off if there's no data transmitting                  |  |
|               | RXD           | Flickering if device is receiving data               |  |
|               | RAD           | Off if there is no data receiving                    |  |
|               | Network       | IPV4, TCP/UDP, DHCP, DNS                             |  |
|               | Protocol      | IFV4, TCF/ODF, DHCF, DNS                             |  |
|               | IP Retrieving | Static IP/DHCP                                       |  |
| Software      | Transmission  | Support Transparent Data Transmission                |  |
| Parameter     | DNS           | Support Domain Name Resolution                       |  |
| raiametei     | Configuration | PC configuration, support WIN XP/WIN 7/WIN 8/WIN 10  |  |
|               | Cache Size    | Transmit: 8Kbyte, Receive: 8Kbyte。                   |  |
|               | Register Pack | Support custom registration package                  |  |
|               | Heartbeat PCK | Support custom heartbeat package                     |  |
|               | MTBF          | ≥100,000 hours                                       |  |
|               |               | EN 55022: 2006/A1: 2007 (CE &RE) Class B             |  |
| Safety        |               | IEC 61000-4-2 (ESD) Level 4                          |  |
| Certification | EMC           | IEC 61000-4-3 (RS) Level 4                           |  |
|               |               | IEC 61000-4-4 (EFT) Level 4                          |  |
|               |               | IEC 61000-4-5 (Surge)Level 3                         |  |
|               |               |                                                      |  |

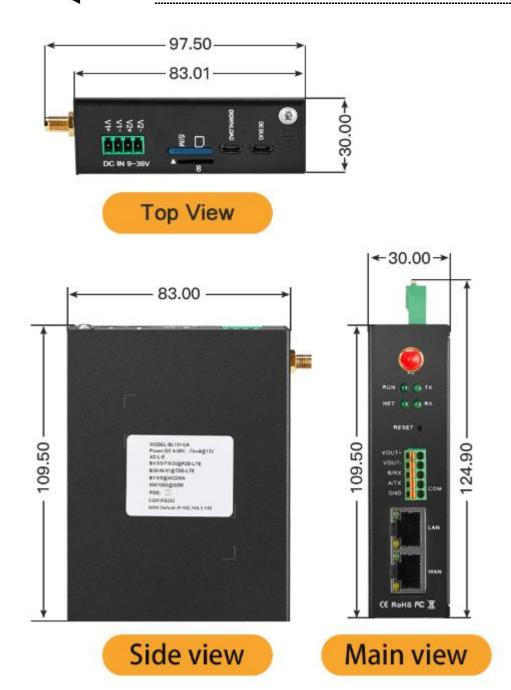


-BL101

|                   |               | IEC 61000-4-6 (CS)Level 4        |  |  |
|-------------------|---------------|----------------------------------|--|--|
|                   |               | IEC 61000-4-8 (M/S) Level 4      |  |  |
|                   | Other         | CE, FCC                          |  |  |
| Environment       | Working       | -40∼80℃, 5∼95% RH                |  |  |
| Condition Storage |               | -40∼85℃,5∼95% RH                 |  |  |
|                   | Case Material | Metal                            |  |  |
|                   | Size          | 30mm×83mm×110mm(L*W*H)           |  |  |
| Others            | Protection    | IP30                             |  |  |
|                   | Net Weight    | 291.2g                           |  |  |
|                   | Mounting      | Wall-mounting, DIN Rail mounting |  |  |

#### 1.6 Model Selection

| Model<br>NO. | WAN | LAN | COM (Default RS485)<br>(RS485/RS232 optional) | OPC-UA | 4G | POE PD   |
|--------------|-----|-----|-----------------------------------------------|--------|----|----------|
| BL101        | √   | √   | V                                             | Х      | √  | Optional |
| BL101E       | √   | √   | V                                             | Х      | Х  | Optional |
| BL101UA      | √   | √   | √                                             | √      | Х  | Optional |


#### 2 Hardware Introduction

#### 2.1 Outline Dimension

Unit: mm







#### 2.2 Power Source Input



2 optional power source input channels, support 9-36VDC voltage input, support inverse

connection protection.

#### 2.3 SIM Card and SD Card Slots

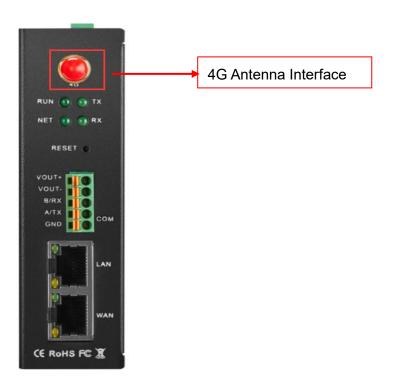


Before inserting or removing SIM card, please make sure device is turned off. Insert SIM card picking PIN to the small hole of card slot and eject the card slot with tiny force.

Note: Place the device like above picture to insert/remove SIM card

#### 2.4 Program Debugging & Upgrading Interface




DEBUG USB port is for program debugging. DOWNLOAD USB port is for program upgrading.

#### 2.5 Device Grounding



Before connecting the device, please do equipment grounding with grounding screw to prevent electromagnetic interference

#### 2.6 4G Antenna



#### 2.7 LED Indicator



| LED Indicator Introduction |                              |            |                                    |  |  |
|----------------------------|------------------------------|------------|------------------------------------|--|--|
|                            | Item Name Status Description |            |                                    |  |  |
| DUN Davisa Dunair -        |                              | Flickering | Device is running                  |  |  |
| RUN                        | Device Running               | Off        | Device faulty                      |  |  |
|                            | NET Ethernet/4G Network      | Flickering | Ethernet network                   |  |  |
| NET                        |                              | On         | 4G network                         |  |  |
|                            |                              | Off        | No communication                   |  |  |
| TX                         | Data Transmitting            | Flickering | Serial port is transmitting data   |  |  |
| TX Data Transmitting       |                              | Off        | No data transfer from serial port  |  |  |
| DV                         | D ( D                        | Flickering | Serial port is receiving data      |  |  |
| RX                         | Data Receiving               | Off        | No data is received in serial port |  |  |

Note: RUN indicator will be on if device is powered. If it's not on, please check whether there's reverse wiring or power source problem.



#### 2.8 RESET Button

Once gateway has run for some time, use a tiny stick to press Reset button for about 10 seconds until RUN indicator is off. Then Gateway will restart and return to factory setting.



#### 2.9 COM & Power Output Port

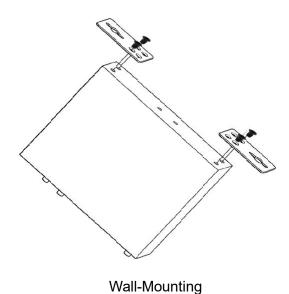


| RS485/RS232 & Power Output Terminal |                                      |  |  |  |  |
|-------------------------------------|--------------------------------------|--|--|--|--|
| Item                                | Item Description                     |  |  |  |  |
| VOUT+                               | Power Output Positive Terminal       |  |  |  |  |
| VOUT-                               | VOUT- Power Output Negative Terminal |  |  |  |  |
| B/RX                                | B/RX RS485 Data-(B)/Receiving Data   |  |  |  |  |
| A/TX                                | RS485 Data+(A)/Transmitting Data     |  |  |  |  |
| GND Grounding                       |                                      |  |  |  |  |
| Note:                               |                                      |  |  |  |  |

Power output voltage is equal to power input voltage: 9~36VDC.



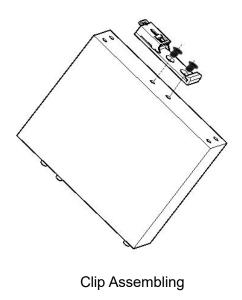
#### 2.10 WAN & LAN Port

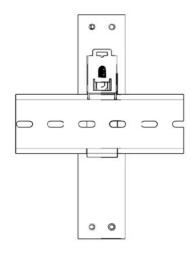



| Ethernet Port                      |        |            |                   |  |  |
|------------------------------------|--------|------------|-------------------|--|--|
| Indicator Color Status Description |        |            |                   |  |  |
| Data                               | Croon  | On         | 100Mbps mode      |  |  |
| Rate                               | Green  | Off        | 10Mbps mode       |  |  |
| Link                               |        | On         | Connected         |  |  |
|                                    | Yellow | Flickering | Transferring data |  |  |
|                                    |        | Off        | Disconnected      |  |  |

# 3 Device Mounting

BL101 Gateway can be placed on desk, mounted on the wall and DIN Rail


#### 3.1 Wall-Mounting




\_



#### 3.2 DIN Rail Mounting



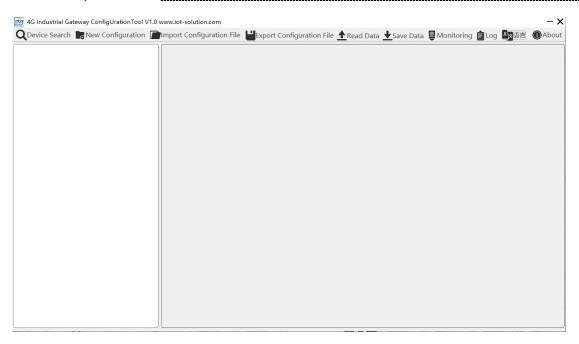


**DIN Rail Mounting** 

#### **4 Configuration Software Introduction**

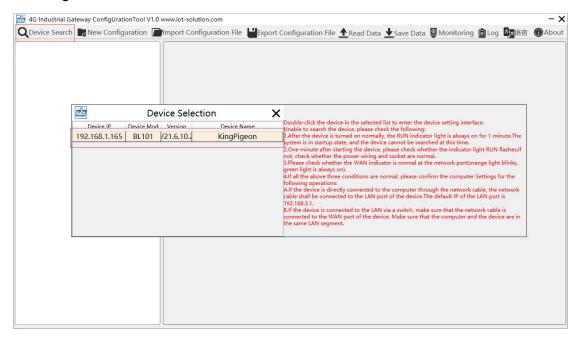
#### 4.1 Login to Configuration Software

Connect BL101 to router or switch through WAN port with standard direct network cable or cross network cable. Make sure BL101 and PC are in the same local area network. If it's necessary to connect the gateway to PC directly, use standard cross network cable to connect through BL101 LAN port. (If BL101 is connected to PC directly, PC IP must be specified to 192.168.3.1 as default LAN IP of gateway is 192.168.3.1 from factory setting)


Note: WAN port IP is retrieved automatically, LAN port IP is 192.168.3.1 from factory setting

#### 4.1.1 Open Configuration Software

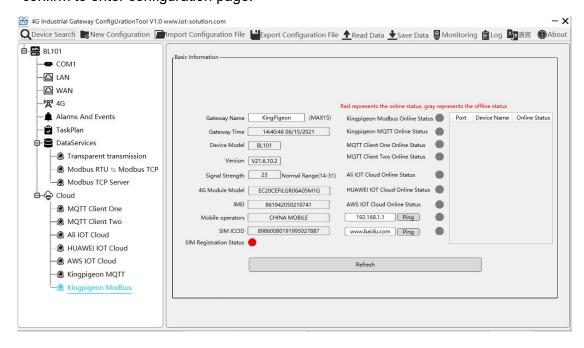
Double click BL10x\_Configurator\_V1.0 on PC to run BL101 configuration software and enter below page




-BL101



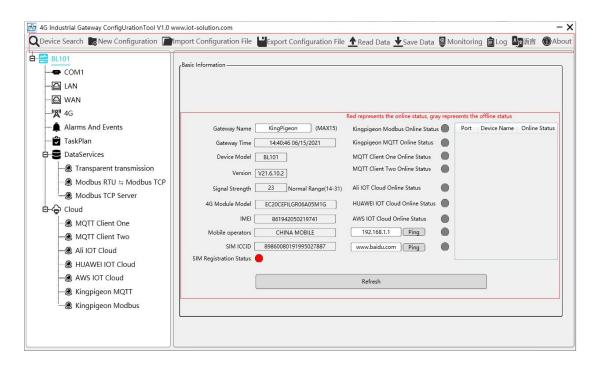
#### 4.1.2 Search for Device


Click Device Search to get all devices which are in the same local area network with PC. If no device is found, please follow the procedure on the right notice box to check the root cause. Below is the example of connecting Gateway BL101 with switch through WAN. A device with IP 192.168.1.165 is searched out.





# 4.1.3 Connect Gateway Device


Double click the device to be configured (For example, double click device with IP 192.168.1.165). Reading success message will be shown in prompting box. Click confirm to enter configuration page.





## 4.2 Configuration Software Introduction

#### 4.2.1 System Function



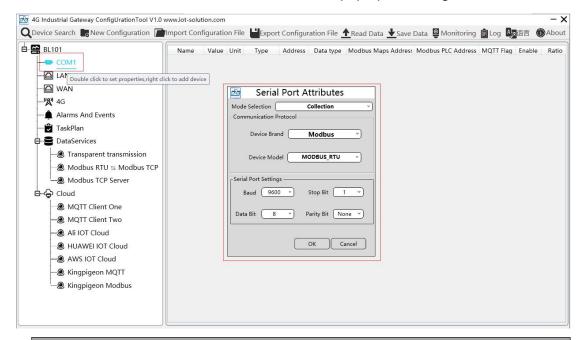
| System Function           |                                                                   |  |
|---------------------------|-------------------------------------------------------------------|--|
| Item                      | Description                                                       |  |
| Device Search             | Search for all BL101 gateways in the same local area network      |  |
| New Configuration         | Open a new default configuration file                             |  |
| Import Configuration File | Import gateway configuration file                                 |  |
| Export Configuration File | Export gateway configuration file                                 |  |
| Read Data                 | Read logged-in BL101 gateway configuration parameters             |  |
| Save Data                 | Save all configuration parameters by clicking it                  |  |
| Monitoring                | Monitor connected device value                                    |  |
| Log                       | System running log.                                               |  |
|                           | If device issue, click save log to send it to specified email box |  |
| Language                  | Click it to change language to English                            |  |
| About                     | Software Version, Issue Date, Firmware upgrade information        |  |

| Basic Information of Gateway BL101 |                            |
|------------------------------------|----------------------------|
| Item                               | Description                |
| Gateway Name                       | Default Name is KingPigeon |



| Gateway Time         | Local time of reading gateway                               |
|----------------------|-------------------------------------------------------------|
| Device Model         | Read device model number                                    |
| Version              | Read device version                                         |
| Signal Strength      | 4G module signal value. If it's less than 14, it means weak |
|                      | signal. Full signal value is 31                             |
| 4G Module Model      | Read 4G module model. If it's null, it means no 4G module   |
| IMEI                 | Device IMEI code                                            |
| Mobile Operators     | SIM card service provider                                   |
| SIM ICCID            | Read SIM card ICCID                                         |
| SIM Registration     | Red indicates SIM card is registered.                       |
| Status               | Gray indicates SIM card is not registered,                  |
| King Pigeon Cloud    | Red indicates King Pigeon cloud is connected via Modbus     |
| via Modbus Online    | Gray indicates King Pigeon cloud is unconnected via         |
| Status               | Modbus                                                      |
| King Pigeon Cloud    | Red indicates King Pigeon cloud is connected via MQTT       |
| via MQTT Online      | Gray indicates King Pigeon cloud is unconnected via MQTT    |
| Status               |                                                             |
| MQTT Client One      | Red indicates MQTT Client One is connected                  |
| Online Status        | Gray indicates MQTT Client One is unconnected               |
| MQTT Client Two      | Red indicates MQTT Client Two is connected                  |
| Online Status        | Gray indicates MQTT Client Two is unconnected               |
| Ali IOT Cloud Online | Red indicates Ali Cloud is connected                        |
| Status               | Gray indicates Ali Cloud is unconnected                     |
| HUAWEI IOT Cloud     | Red indicates HUAWEI Cloud is connected                     |
| Online Status        | Gray indicates HUAWEI Cloud is unconnected                  |
| AWS IOT Cloud        | Red indicates AWS Cloud is connected                        |
| Online Status        | Gray indicates AWS Cloud is unconnected                     |
|                      | Default factory setting Ping 192.168.1.1 gateway, IP can be |
| 100 160 1 1 Ding     | changed. It's gateway through WAN. Click Ping button to     |
| 192.168.1.1 Ping     | check local area network status. Red indicates local area   |
|                      | network is OK. Gray indicates local area network problem.   |
|                      | Default factory setting Ping baidu website. Web address can |
| D'                   | be changed. Wide area network status can be checked by      |
| www.baidu.com Ping   | clicking Ping. Red indicates wide area network is OK. Gray  |
|                      | indicates internet communication problem.                   |
| Davisa Online Otet   | Red indicates gateway is communicating with slave devices   |
| Device Online Status | Gray indicates gateway fails to communicate with salve      |
| Prompting Box        | device                                                      |
|                      |                                                             |




Refresh

Refresh basic information of gateway

#### 4.2.2 COM Port Introduction

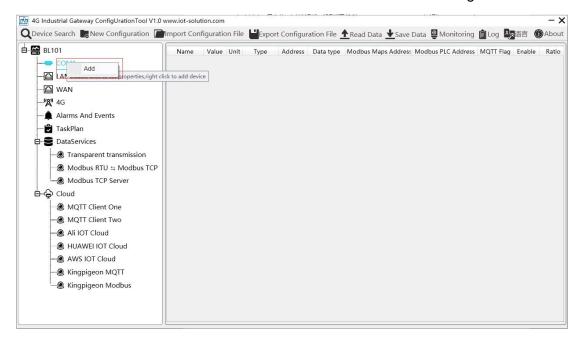
#### **4.2.2.1 COM Port Configuration**

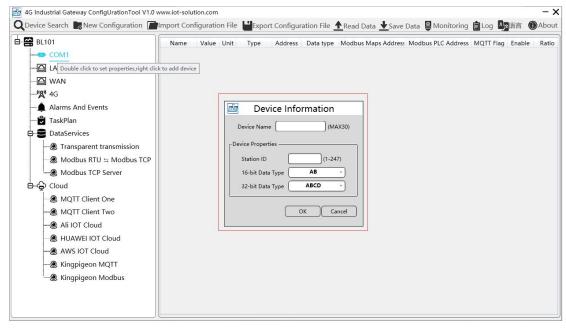
Double click COM1. Serial Port Attributes box will pop up for configuration



| Serial Port Attributes |              |                               |            |
|------------------------|--------------|-------------------------------|------------|
| Item                   |              | Description                   | Default    |
| Mode Selection         |              | Select mode:                  |            |
|                        |              | Collect/Transparent           | Collect    |
| IVIO                   | de Selection | Transmission/Modbus RTU to    | Collect    |
|                        |              | Modbus TCP                    |            |
| Drotocol               | Device Brand | Modbus                        | Modbus     |
| Protocol               | Device Model | Modbus RTU                    | Modbus RTU |
|                        |              | Select from "2400", "4800",   |            |
|                        | Baud Rate    | "9600", "19200", "38400",     | 9600       |
| Serial                 |              | "57600", "115200"             |            |
| Port                   | Stop Bit     | Select "1Bit" or "2Bit"       | 1Bit       |
| Settings               | Data Bit     | Select "7Bit" or "8Bit"       | 8Bit       |
|                        | Parity Bit   | Select "None", "Even" , "Odd" | None       |
| OK                     |              | Confirm COM configuration     |            |

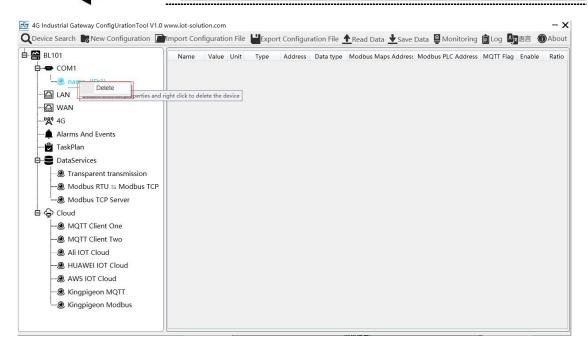



-BL101


Cancel COM port configuration

#### 4.2.2.2 Add COM Port Devices

Right click COM1 and click Add to add new data logging device. Device configuration box will pop up. For the added device, double click it to show device configuration information. Right click to delete device.


Note: Maximum 50 Modbus RTU devices' data can be collected through COM



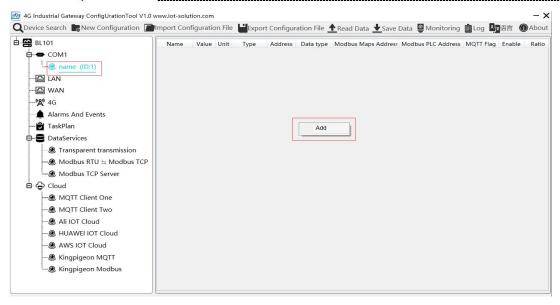


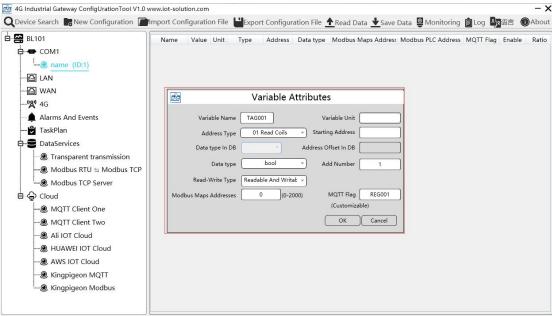


-BL101



| Device Information |                  |                                       |         |
|--------------------|------------------|---------------------------------------|---------|
| Item               |                  | Description                           | Default |
| Device Name        |                  | Name of Data Collecting Device        |         |
| Device Properties  | Station ID       | Data Collecting Device Modbus         |         |
|                    | Station ID       | Communication Address                 |         |
|                    | 16-bit Data Type | Select "AB" or "BA"                   | AB      |
|                    | 32-bit Data Type | Select "ABCD", "DCBA", "BADC", "CDAB" | ABCD    |
| OK                 |                  | Confirm device configuration          |         |
| Cancel             |                  | Cancel device configuration           |         |


#### 4.2.2.3 Add COM Port Device Datapoints

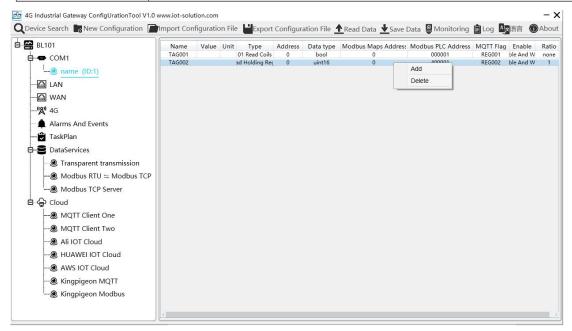

Click device name and then right click the box on the right. Add box will pop up. Click Add to enter datapoint configuration box. Right click the added datapoint to delete it. Double click the datapoint to edit it. To add more datapoints, right click the box and perform the same procedures.

#### KING PIGEON



#### **Modbus to MQTT IoT Gateway** -BL101





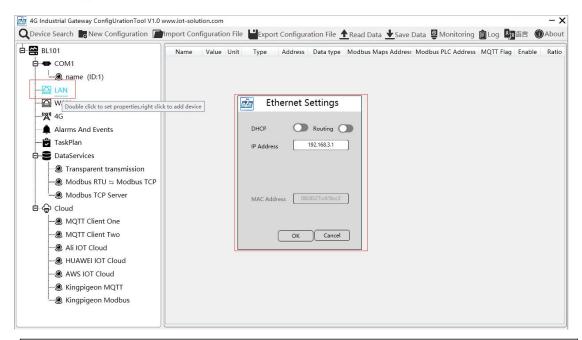

| Datapoints Configuration |                                                                   |  |
|--------------------------|-------------------------------------------------------------------|--|
| Item                     | Description                                                       |  |
| Variable Name            | Name of Added Datapoint                                           |  |
| Variable Unit            | Datapoint unit                                                    |  |
|                          | Select datapoint Modbus function code:                            |  |
| Address Type             | 01 read holding coil, 02 read input coil,                         |  |
|                          | 03 read holding register, 04 read input register                  |  |
| Starting Address         | Datapoint address                                                 |  |
|                          | Select from Bool, 16-bit unsigned integer, 16-bit signed integer, |  |
| Data Type                | 32-bit unsigned integer, 32-bit signed integer, 32-bit single     |  |
|                          | precision floating point                                          |  |
| Add Number               | Datapoint qty                                                     |  |



-BL101

| Read-Write Type | Select "read only", "read and write"                         |  |
|-----------------|--------------------------------------------------------------|--|
| Ratio           | Only set for numeric data. Data can be magnified or minified |  |
|                 | with certain ratio before sending to cloud                   |  |
| Modbus Mapping  | Address in Gateway where datapoints are stored.              |  |
| Address         | Boolean: 0~2000 addresses, Numeric: 0-2000 addresses.        |  |
| MQTT flag       | Datapoint MQTT mark, can be any mark                         |  |
| OK              | Confirm datapoint setting                                    |  |
| Cancel          | Cancel datapoint setting                                     |  |




Right click datapoint to delete it and double click it to edit it.

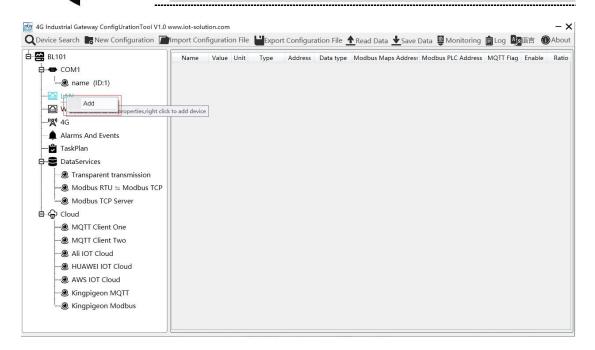
#### 4.2.3 LAN Port Introduction

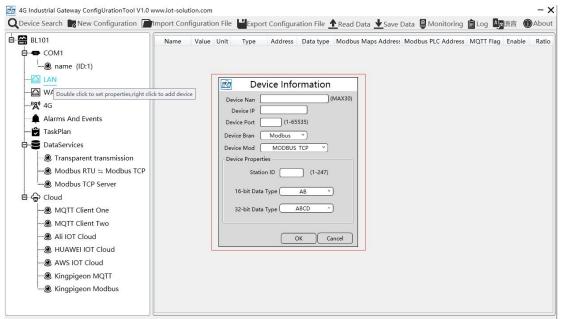
#### 4.2.3.1 LAN Port Attributes Configuration

Double click LAN port to enter setting page. Factory default IP of LAN is 192.168.3.1. Auto IP address distribution and routing functions are turned off from factory setting in default

-BL101




| LAN Port Configuration |                                                           |  |
|------------------------|-----------------------------------------------------------|--|
| Item                   | Description                                               |  |
| DHCP                   | Green indicates auto IP distribution for LAN is enabled   |  |
|                        | Gray indicates auto IP distribution for LAN is turned off |  |
| Routing                | Green indicates routing function is enabled.              |  |
|                        | Gray indicates routing function is turned off             |  |
| IP Address             | LAN port IP Address                                       |  |
| MAC                    | LAN port MAC                                              |  |
| OK                     | Confirm LAN port Setting                                  |  |
| Cancel                 | Cancel LAN port setting                                   |  |


#### 4.2.3.2 Add LAN Port Device

Right click LAN and clik Add to enter device configuration page. Device can be connected directly with Gateway BL101 through LAN or through switch which is connected with LAN.

Note: Total 50 devices can be connected through LAN and WAN







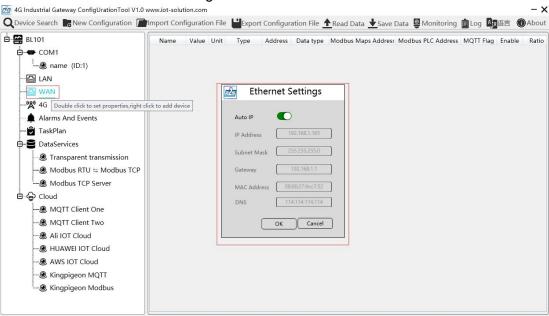
| LAN Port Device Configuration |                                              |  |
|-------------------------------|----------------------------------------------|--|
| Item                          | Description                                  |  |
| Device Name                   | Name of Device to connect through LAN        |  |
| Device IP                     | Set IP Address of LAN port device            |  |
| Device Port                   | Set LAN device port                          |  |
| Device Brand                  | Modbus                                       |  |
| Device Model                  | Modbus TCP                                   |  |
| Station ID                    | LAN port device Modbus communication address |  |
| 16-bit Data Type              | Select "AB" or "BA"                          |  |
| 32-bit Data Type              | Select"ABCD", "DCBA", "BADC" or "CDAB"       |  |



-BL101

| OK     | Confirm LAN port device setting |
|--------|---------------------------------|
| Cancel | Cancel LAN port device setting  |

#### 4.2.3.3 Add LAN Port Device Datapoints


Follow the same procedure of adding datapoints for COM port device to add datapoints of LAN port device

**Add COM Device Datapoint** 

#### 4.2.4 WAN Port Introduction

#### 4.2.4.1 WAN Port Attributes Configuration

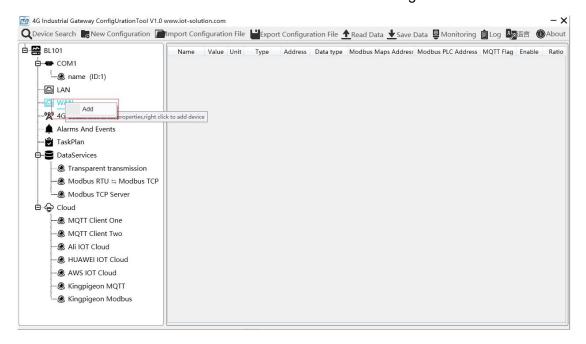
Double click WAN to enter configuration box

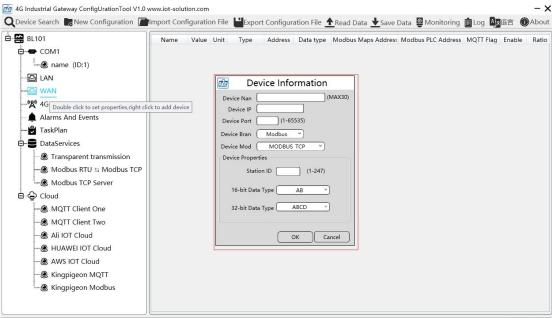


| WAN Port Configuration |                                    |  |
|------------------------|------------------------------------|--|
| Item                   | Description                        |  |
| Auto IP                | Green indicates auto retrieving IP |  |
|                        | Gray indicates IP is specified     |  |
| IP Address             | Current IP Address of WAN Port     |  |
| Subnet Mask            | Current WAN Subnet Mask            |  |
| Gateway                | Current WAN Gateway Address        |  |
| MAC Address            | WAN port MAC address               |  |
| DNS                    | Current WAN port DNS server        |  |
| OK                     | Confirm WAN port setting           |  |

-BL101

Cancel


Cancel WAN port setting


#### 4.2.4.2 Add WAN Port Device

Right click WAN and then click add to enter device configuration page

More devices can be connected with switch connecting WAN port

Note: Total 50 Modbus TCP devices can be connected through LAN and WAN





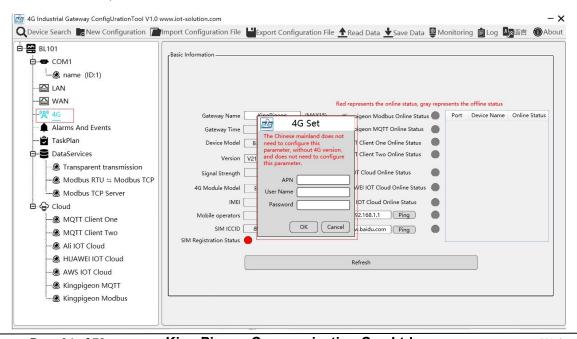
#### **WAN Port Device Configuration**



-BL101

| Item             | Description                                  |
|------------------|----------------------------------------------|
| Device Name      | Name of WAN Port Device                      |
| Device IP        | WAN Port device IP address                   |
| Device Port      | WAN port device Port                         |
| Device Brand     | Modbus                                       |
| Device Model     | Modbus TCP                                   |
| Station ID       | WAN port device Modbus communication address |
| 16-bit Data Type | Select "AB" or "BA"                          |
| 32-bit Data Type | Select "ABCD", "DCBA", "BADC" or "CDAB"      |
| OK               | Confirm WAN port device setting              |
| Cancel           | Cancel WAN port device setting               |

#### 4.2.4.3 Add WAN Port Device Datapoints


Follow the same procedure of adding datapoints for COM port device to add datapoints of WAN port device

Add COM Port Device Datapoints

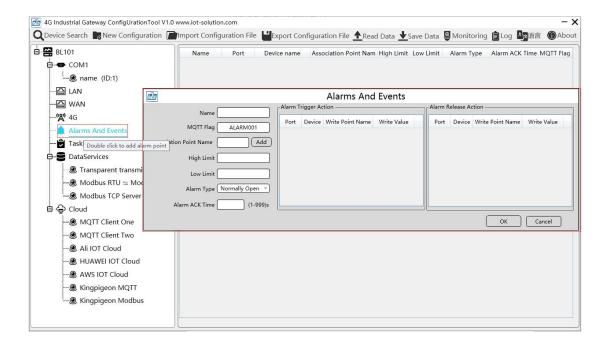
#### 4.2.5 4G Cellular Network Introduction

Double click 4G to enter APN setting box.

Note: It's not necessary to set APN for China mainland 4G network. If no 4G module in the device, it's not needed to set it either

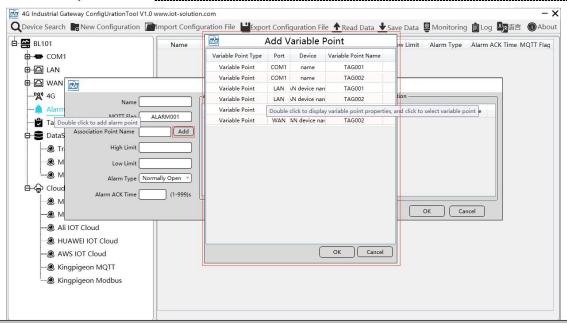


9 King Pigeon Communication Co., Ltd.


-BL101

| 4G Configuration |                                                |  |
|------------------|------------------------------------------------|--|
| Item             | Description                                    |  |
| APN              | Access Point Name of SIM card cellular network |  |
| User Name        | User Name of SIM card cellular network         |  |
| Password         | Password of SIM card cellular network          |  |

#### 4.2.6 Alarms and Events Configuration

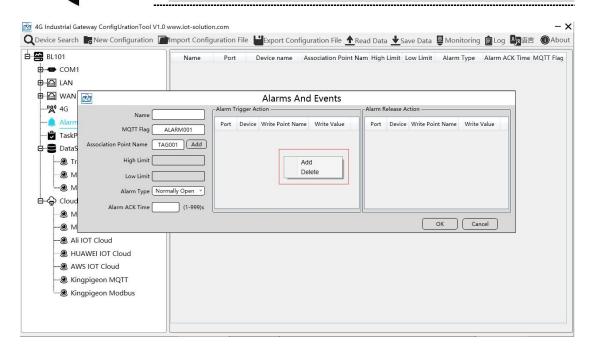

Double click Alarms and Events to enter setting box. Alarm points, actions and alarm recovery actions can be set according to requirement

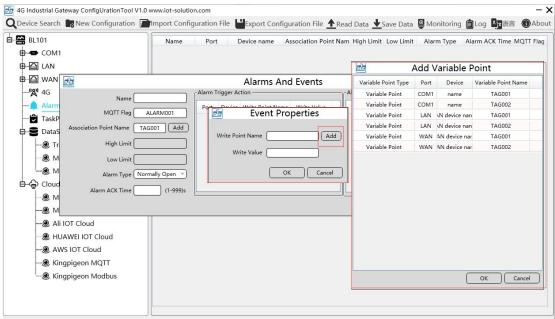
#### 4.2.6.1 Alarm Points Configuration





-BL101



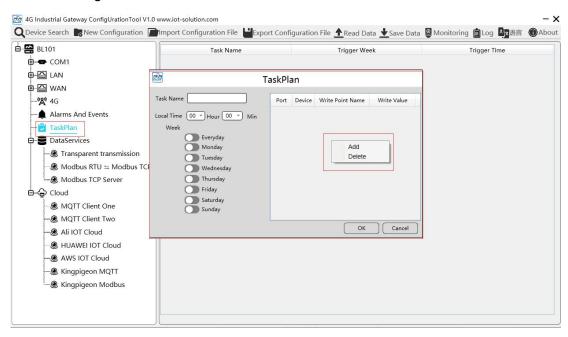


| Alarm and Events Configuration |                                                                     |  |
|--------------------------------|---------------------------------------------------------------------|--|
| Item                           | Description                                                         |  |
| Name                           | Name of Alarm Point                                                 |  |
| MQTT Flag                      | MQTT flag of alarm point, can be randomly set                       |  |
| Association Point<br>Name      | Select alarm point and click Add. Datapoint box will pop up. Click  |  |
|                                | the point to be set for alarm and click OK to confirm. Double click |  |
|                                | datapoint to enter datapoint attribute page                         |  |
| High Limit                     | High Limit alarm value of numeric datapoints                        |  |
| Low Limit                      | Low limit alarm value of numeric datapoints                         |  |
| Digital Alarm Type             | Select from digital alarm mode: Normally Open or Normally Close     |  |
| Alarm ACK Time                 | Within alarm acknowledge time, if data will recover to normal       |  |
|                                | value, no alarm will be triggered. Otherwise it will generate alarm |  |
| OK                             | Confirm alarms and events setting                                   |  |
| Cancel                         | Cancel alarms and events setting                                    |  |

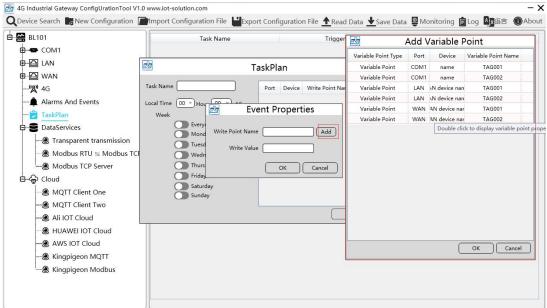
#### 4.2.6.2 Alarm Event Configuration

Right click Alarm Trigger Action box and click Add to enter Event configuration box for setting actions to be performed when alarm is triggered. Right click Alarm Release Action box to set actions to be performed when alarm is released

-BL101







| Event Configuration |                                                                   |
|---------------------|-------------------------------------------------------------------|
| Item                | Introduction                                                      |
|                     | Write Point Name is generated based on selected datapoint.        |
| Write Point Name    | Click Add, select datapoint and click OK to confirm. Double click |
|                     | datapoint to view its attributes                                  |
| Write Value         | Write datapoint value. For Boolean value, select 1 or 0           |



#### 4.2.7 Task Plan Configuration

Double click Task Plan to enter configuration box. Right click the box and click Add to enter configuration box

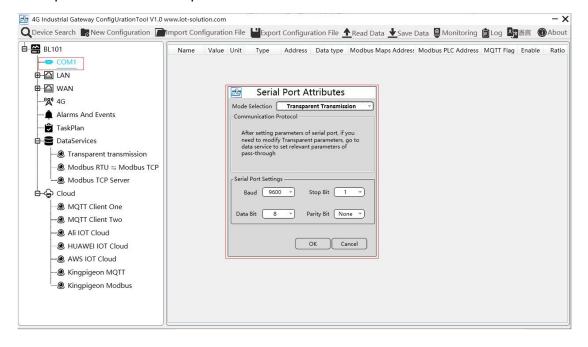




| Task Plan Configuration |                                                      |  |
|-------------------------|------------------------------------------------------|--|
| Item Description        |                                                      |  |
| Task Name               | Name of Task Plan                                    |  |
| UTC Time                | Set time to perform the planned task (UTC time)      |  |
| Week                    | Set week day to perform the planned task             |  |
| Write Point Name        | Write Point Name will be generated based on selected |  |

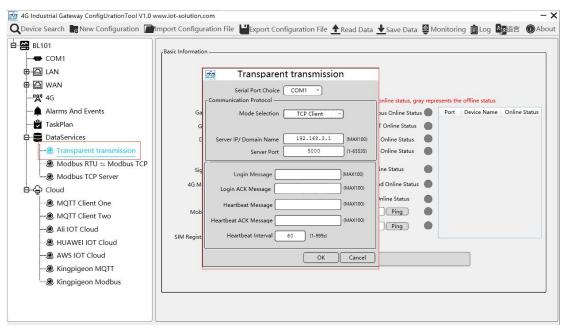
Page 38 of 79




-BL101

|             | datapoint.Click Add , select the datapoint and click OK to |
|-------------|------------------------------------------------------------|
|             | confirm. Double click datapoint to view its attributes     |
| Write Value | Write datapoint value. For Boolean value, select 1 or 0    |
| OK          | Confirm Task Plan setting                                  |
| Cancel      | Cancel Task Plan setting                                   |

#### 4.2.8 Data Service


## 4.2.8.1 Transparent Transmission

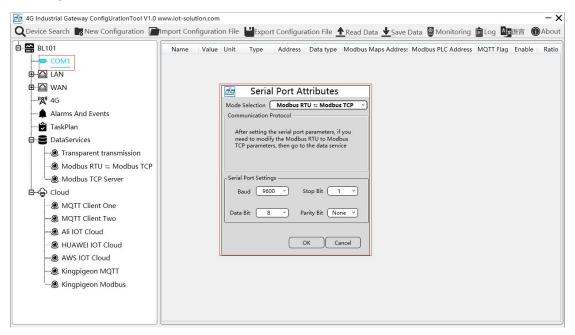
Set COM mode to Transparent Transmission, set COM parameters and then configure Transparent Transmission parameters

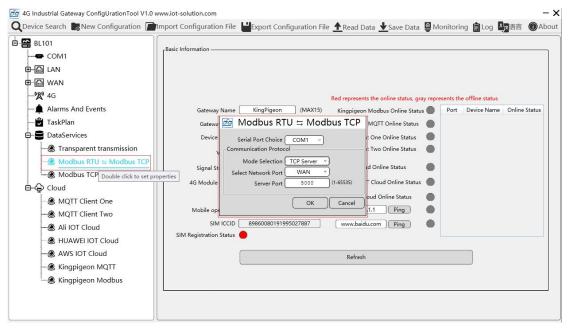




-BL101




| Transparent Transmission Configuration |                                                            |  |
|----------------------------------------|------------------------------------------------------------|--|
| Item                                   | Description                                                |  |
| Serial Port Choice                     | COM1                                                       |  |
| Mode Selection                         | Select Gateway as "TCP Server" or "TCP Client"             |  |
| Select Network Port                    | Only set it when BL101 Gateway is used as TCP server       |  |
| Select Network Port                    | Select WAN or LAN                                          |  |
|                                        | If BL101 is used as server, it can't be set but            |  |
| Server IP                              | automatically show selected WAN or LAN IP                  |  |
| /Domain Name                           | If BL101 is used as client, input transparent transmission |  |
|                                        | server IP                                                  |  |
| Monitoring Port                        | If BL101 is used as server, input monitoring port          |  |
| /Server Port                           | If BL101 is used as client, input server port              |  |
| Login Message                          | Data Package of logging in to server                       |  |
| Login ACK Message                      | Data Package of server response to login                   |  |
| Heartbeat Message                      | Heartbeat Data Package to keep connection                  |  |
| Heartbeat ACK                          | Data Package of server response to heartbeat               |  |
| Message                                |                                                            |  |
| Heartbeat Interval                     | Cycle time of sending Heartbeat package. Default is 60s    |  |
| OK                                     | Confirm Transparent Transmission setting                   |  |
| Cancel                                 | Cancel Transparent Transmission setting                    |  |

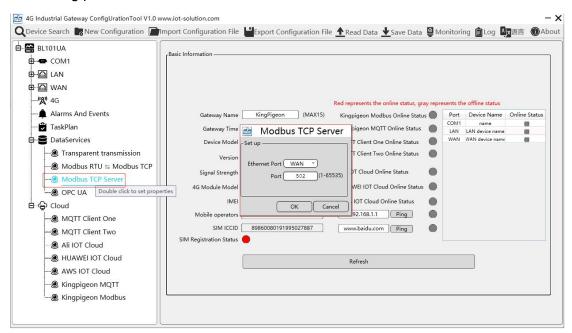

#### 4.2.8.2 Modbus RTU to Modbus TCP

Set COM mode to Modbus RTU to Modbus TCP, set COM parameter and then

-BL101

#### configure Modbus RTU to Modbus TCP parameters.



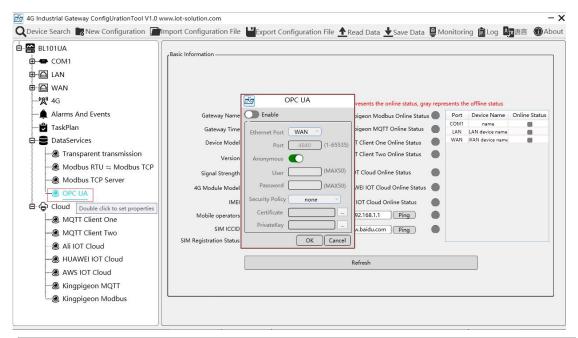



| Modbus RTU to Modbus TCP Configuration |                                                   |
|----------------------------------------|---------------------------------------------------|
| Item                                   | Description                                       |
| Serial Port Choice                     | COM1                                              |
| Mode Selection                         | TCP Server (Gateway can only be TCP Server)       |
| Select Network Port                    | Select "WAN" or "LAN"                             |
| Monitoring Port                        | Input port of monitoring BL101 Gateway (required) |
| OK                                     | Confirm Modbus RTU to Modbus TCP configuration    |
| Cancel                                 | Cancel Modbus RTU to Modbus TCP configuration     |



#### 4.2.8.3 Modbus TCP Server

BL101 Gateway supports Modbus TCP protocol and provides data as Modbus TCP server. Modbus TCP server is enabled permanently. Only configure Ethernet port and monitoring port




| Modbus TCP Server Configuration |                                          |  |
|---------------------------------|------------------------------------------|--|
| Item                            | Description                              |  |
| Ethernet Port                   | Select "WAN" or "LAN"                    |  |
| Port                            | Input gateway monitoring port (required) |  |
| OK                              | Confirm Modbus TCP Server setting        |  |
| Cancel                          | Cancel Modbus TCP Server setting         |  |

#### 4.2.8.4 OPC UA

BL101 Gateway supports OPC UA protocol and provides data as OPC UA server Note: Only the model which supports OPC UA needs this configuration

-BL101

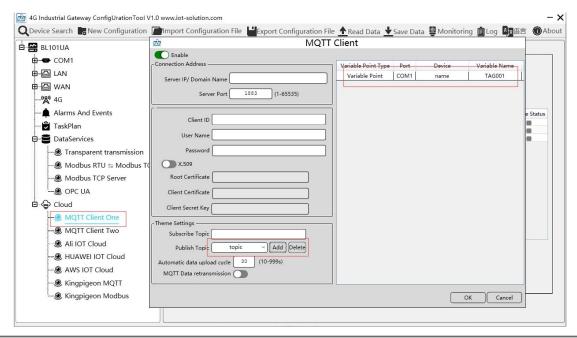


| OPC UA Configuration |                                                                  |  |
|----------------------|------------------------------------------------------------------|--|
| Item                 | Description                                                      |  |
| Facility             | Green indicates OPC UA is enabled                                |  |
| Enable               | Gray indicates OPC UA is disabled. Default is disabled           |  |
| Ethernet Port        | Select "WAN" or "LAN"                                            |  |
| Port                 | Input server port (required)                                     |  |
| Ananymaya            | Green indicates login anonymously. Default is Green.             |  |
| Anonymous            | Gray indicates login with Account and Password.                  |  |
| User                 | Input User Name                                                  |  |
| Password             | Input User Password                                              |  |
| Security Policy      | Encryption policy. Select "none", "basic256", "basic128rsa15" or |  |
|                      | "basic256sha256"                                                 |  |
| Certificate          | OPC UA certificate, select file to upload                        |  |
| PrivateKey           | OPC UA encryption key, select file to upload                     |  |
| OK                   | Confirm OPC UA setting                                           |  |
| Cancel               | Cancel OPC UA setting                                            |  |

#### 4.2.9 Cloud Platform Connection

BL101 Gateway supports device online in multiple cloud platforms simultaneously.




#### 4.2.9.1 MQTT Client One

MQTT Client One can be connected to cloud with certificate or without certificate It supports multiple publishing topics.

Click Add to set publish topic. Publish topic name can be viewed from drop-down list of Publish Topic. Select Publish Topic Name and click Delete to delete publish topic. MQTT Client One supports publishing certain datapoints of each topic. Move mouse cursor to the right box, right click it and click Add to enter datapoint dialog box. Select the datapoint to publish and click OK to confirm it. Double click datapoint to view its attributes.

Take below picture for example, only datapoint TAG001 of COM Device 1 is published and other datapoints are not published.

Note: Datapoint box is blank in default which means all datapoints will be published in default. If multiple topics are published, only one topic datapoint box can be blank. Other topic datapoints must be selected.

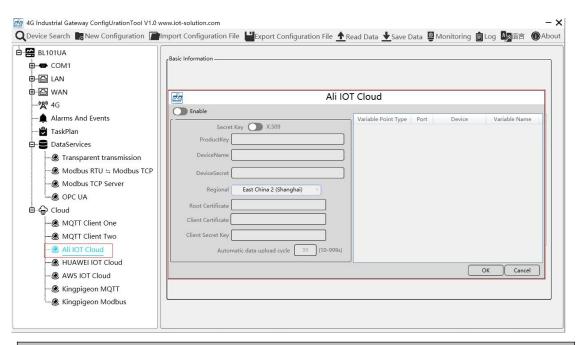


| MQTT Client One Configuration |                                                |  |
|-------------------------------|------------------------------------------------|--|
| Item                          | Description                                    |  |
| Enable                        | Green indicates MQTT Client One is enabled     |  |
| Enable                        | Gray indicates MQTT Client One is not enabled. |  |
| Server IP/ Domain Name        | Input Server IP/Domain name                    |  |
| Server Port                   | Input server port(required), default is 1883   |  |
| Client ID                     | Client Identifier of MQTT Connecting message.  |  |
| Client ID                     | Server uses it to identify Client              |  |



-BL101

| User Name                     | User Name of MQTT Connecting message.                         |
|-------------------------------|---------------------------------------------------------------|
| User Name                     | Server uses it for ID verification and authorization          |
| Password                      | Password of MQTT Connecting message                           |
| Password                      | Server uses it for ID verification and authorization          |
| X.509                         | Green indicates certificate is enabled                        |
| (Enable Certificate)          | Gray indicates certificate is not enabled                     |
| Root Certificate              | Select file to upload (Need enable Certificate first)         |
| Client Certificate            | Select file to upload (Need enable Certificate first)         |
| Client Private Key            | Select file to upload (Need enable Certificate first)         |
| 0.1. 11. T. :                 | Topic of MQTT subscribing message. After subscribing          |
| Subscribe Topic               | server can send message to client for controlling             |
|                               | Topic of MQTT publishing message. It's used for MQTT to       |
|                               | identify message channel of sending valid load data. Wildcard |
| Publish Topic                 | can't be included in publishing message topic name.           |
|                               | Click Add to add more public topics.                          |
|                               | Click Delete to delete Public Topic                           |
| Uploading Interval            | Cycle time of MQTT data sending. Default is 30s               |
| MQTT Data Re-transmission     | Green indicates offline data will be transmitted once network |
|                               | recovers; Gray indicates offline data will not be transmitted |
| (Enable data re-transmission) | once network resumes                                          |
| OK                            | Confirm MQTT Client One setting                               |
| Cancel                        | Cancel MQTT Client One setting                                |
|                               |                                                               |


### 4.2.9.2 MQTT Client Two

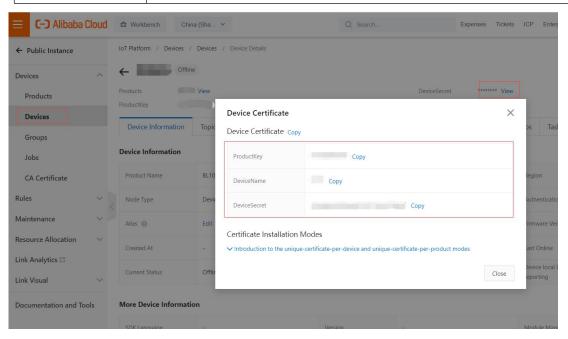
Follow the same procedure of configuring MQTT Client One to set MQTT Client Two MQTT Client Two subscribe topic does not work. MQTT Client Two is used for viewing data from cloud but not controlling data

MQTT Client Two Configuration refer to MQTT Client One

-BL101

#### 4.2.9.3 Alibaba Cloud




| Alibaba Cloud Configuration |                                                                  |
|-----------------------------|------------------------------------------------------------------|
| Item                        | Description                                                      |
| Enable                      | Green indicates Alibaba Cloud is enabled                         |
|                             | Gray indicates Alibaba Cloud is not enabled. Default is disabled |
| Sporot Koy/V 500            | Default is connecting with Secret Key. Click it to move the      |
| Secret Key/X.509            | button on the right for connecting with Certificate.             |
| ProductKov                  | Set the same ProductKey as the one in Ali Cloud.                 |
| ProductKey                  | See below illustration (Device-Click DeviceSecret to view it)    |
| DeviceName                  | Set the same DeviceName as the one in Ali Cloud                  |
| Devicemanie                 | See below illustration (Device-Click DeviceSecret to view it)    |
| DavissCoaret                | Set the same DeviceSecret as the one in Ali Cloud                |
| DeviceSecret                | See below illustration (Device-Click DeviceSecret to view it)    |
| Region                      | Select Alibaba Cloud Region, default is East China 2(Shanghai)   |
| Root Certificate            | Select file to upload (Need to select certificate X.509 first)   |
| Client Certificate          | Select file to upload (Need to select certificate X.509 first)   |
| Client Secret Key           | Select file to upload (Need to select certificate X.509 first)   |
| Automatic Data              | Civale times of data conding. Default is 200                     |
| Upload Cycle                | Cycle time of data sending. Default is 30s                       |
| Publish Datassist           | Default is blank box with all datapoints to be uploaded          |
| Publish Datapoint Selection | Right click the box and click Add to select datapoint for        |
| Selection                   | uploading. Click OK to confirm it.                               |

Page 46 of 79

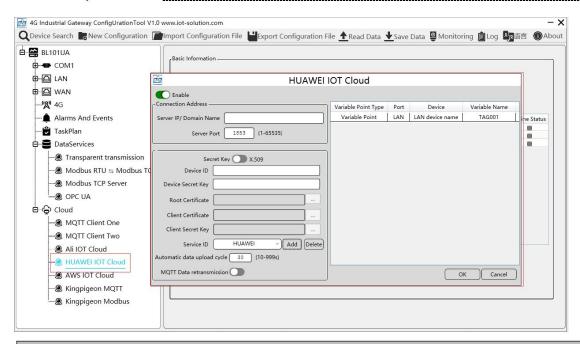


-BL101

| OK     | Confirm Alibaba Cloud setting |
|--------|-------------------------------|
| Cancel | Cancel Alibaba Cloud setting  |



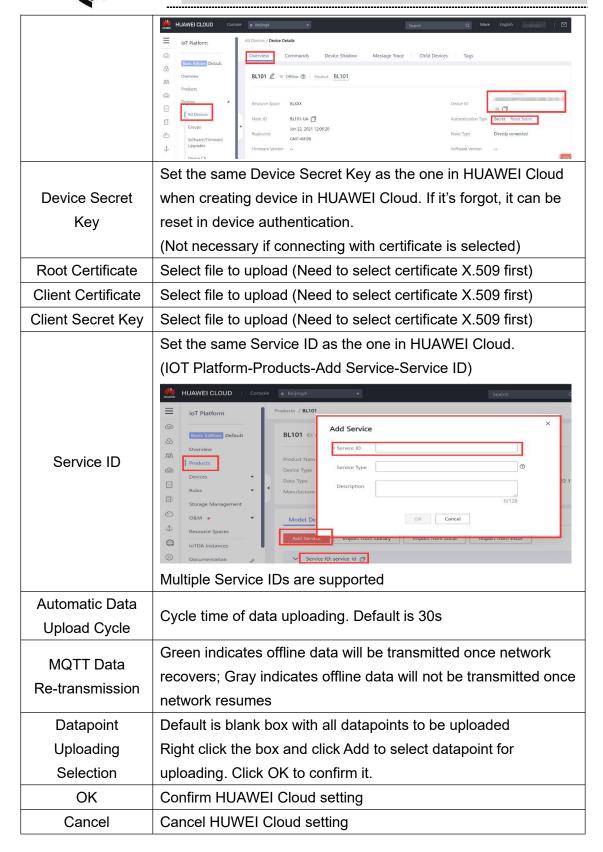
#### 4.2.9.4 HUAWEI Cloud


HUAWEI Cloud can be connected with or without Certificate. It supports multiple service IDs. Click Add to set Service ID. ID can be viewed from the drop-down list. Click Delete to delete service ID.

HUAWEI Cloud supports uploading certain datapoints of each Service ID. Right click the box and click Add to enter datapoint dialog box. Select the datapoint to upload and click OK to confirm it. Double click the datapoint to view its attributes.

Note: Datapoint box is blank in default which means all datapoints will be uploaded. If there're multiple Service IDs, only one Service ID datapoint box can be blank.

Datapoints for uploading must be selected for other Service IDs.

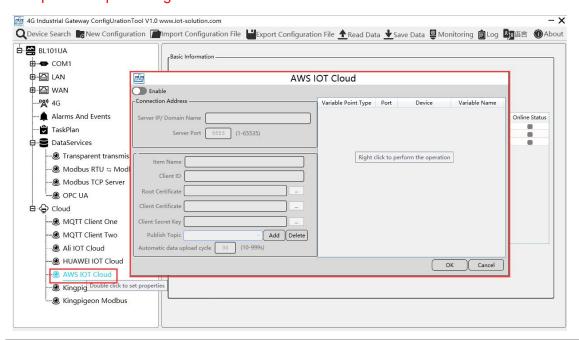

-BL101

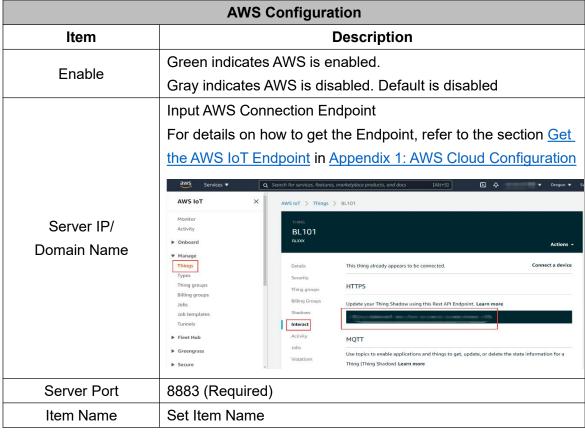






-BL101





### 4.2.9.5 AWS (Amazon Web Service) Cloud

Note: Datapoint box is blank in default which means all datapoints will be published. If

-BL101

multiple topics are published, only one topic datapoint box can be blank. For other topics, datapoints for publishing must be selected.

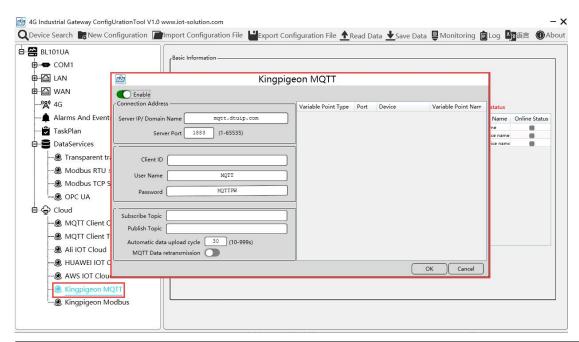






-BL101




Page **51 of 79** 



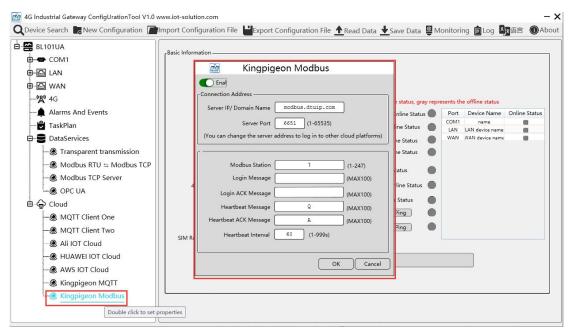
-BL101

| Datapoint Publishing<br>Selection | Default is blank box with all datapoints to be published  |
|-----------------------------------|-----------------------------------------------------------|
|                                   | Right click the box and click Add to select datapoint for |
|                                   | publishing. Click OK to confirm it.                       |
| OK                                | Confirm AWS setting                                       |
| Cancel                            | Cancel AWS setting                                        |

## 4.2.9.6 King Pigeon Cloud via MQTT



| King Pigeon Cloud via MQTT Configuration |                                                        |  |
|------------------------------------------|--------------------------------------------------------|--|
| Item                                     | Description                                            |  |
| Enable                                   | Green indicates King Pigeon cloud via MQTT is enabled  |  |
|                                          | Gray indicates King Pigeon cloud via MQTT is disabled  |  |
| Server IP/Domain Name                    | mqtt.dtuip.com                                         |  |
| Server Port                              | 1883(Required)                                         |  |
| Client ID                                | Input device serial number issued by King Pigeon       |  |
|                                          | (Contact King Pigeon sales to get the serial number if |  |
|                                          | required to connect to King Pigeon cloud)              |  |
| User Name                                | MQTT                                                   |  |
| Password                                 | MQTTPW                                                 |  |
| Subscribe Topic                          | King Pigeon Device Serial Number/+                     |  |
| Publish Topic                            | King Pigeon Device Serial Number                       |  |
| Automatic Data Upload                    | Cycle time of data uploading. Default is 30s           |  |
| Cycle                                    |                                                        |  |




-BL101

| MQTT Data<br>Retransmission       | Green indicates offline data will be transmitted once network recovers; Gray indicates offline data will not be transmitted once network resumes       |
|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| Publishing Datapoint<br>Selection | Default is blank box with all datapoints to be published Right click the box and click Add to select datapoint for publishing. Click OK to confirm it. |
| OK                                | Confirm King Pigeon Cloud via MQTT setting                                                                                                             |
| Cancel                            | Cancel King Pigeon Cloud via MQTT setting                                                                                                              |

## 4.2.9.7 King Pigeon Cloud via Modbus

Both King Pigeon Cloud and customized Clouds can be connected via Modbus RTU protocol.



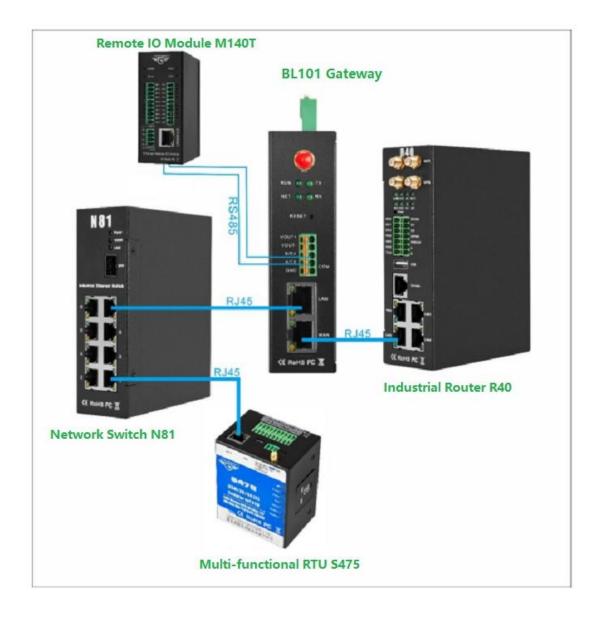
| King Pigeon Cloud via Modbus |                                                         |  |
|------------------------------|---------------------------------------------------------|--|
| Item                         | Description                                             |  |
| Enable                       | Green indicates King Pigeon Cloud via Modbus is enabled |  |
|                              | Gray indicates King Pigeon Cloud via Modbus is disabled |  |
| Server IP/Domain Name        | modbus.dtuip.com                                        |  |
| Server Port                  | 6651 (Required)                                         |  |
| Modbus Station/ID            | Set Modbus communication address of this Gateway device |  |
| Login Message                | Input device serial number issued by King Pigeon        |  |
|                              | (Contact King Pigeon sales to get the serial number)    |  |
| Login ACK Message            | Server acknowledges login messages (Not necessary for   |  |



-BL101

|                       | King Pigeon Cloud)                                       |
|-----------------------|----------------------------------------------------------|
| Heartbeat Message     | Q (Heartbeat message to keep connection)                 |
| Heartbeat ACK Message | A (Server acknowledges Heartbeat messages)               |
| Heartbeat Interval    | Cycle time of sending Heartbeat messages, default is 60s |
| OK                    | Confirm King Pigeon Cloud via Modbus setting             |
| Cancel                | Cancel King Pigeon Cloud via Modbus setting              |

## **5 BL101 Gateway Application Example**


BL101 COM port connects remote IO module M140T and collects its data through Modbus RTU protocol.

BL101 LAN port connects network switch N81 and multi-functional RTU S475 connects N81 switch. S475 data is collected through Modbus TCP protocol.

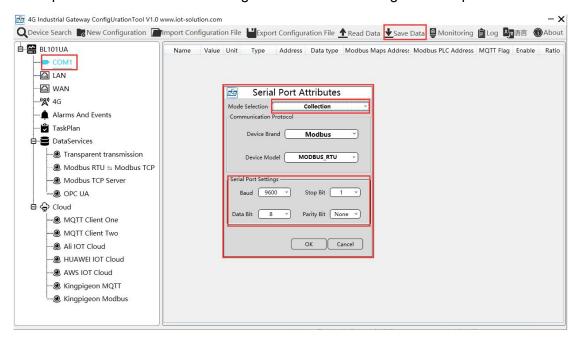
BL101 WAN port connects 4G industrial Router R40 LAN port. Router R40 provides network to BL101 Gateway. The collected data is uploaded to various cloud platforms



## **5.1 Device Connecting Diagram**



## 5.2 Configuration Software Setting


Connecting devices, datapoints and cloud connection must be set in configuration software

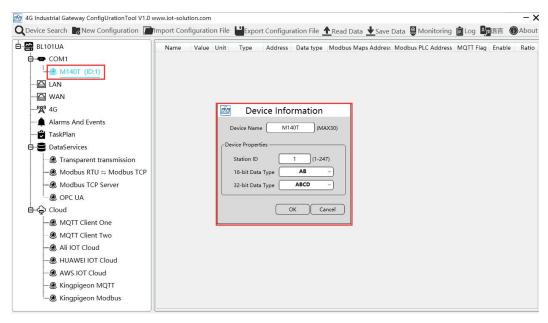


### 5.2.1 Add Devices and Datapoints

## **5.2.1.1 COM Port Configuration**

COM port collects M140 data through Modbus RTU. Configure COM port like below



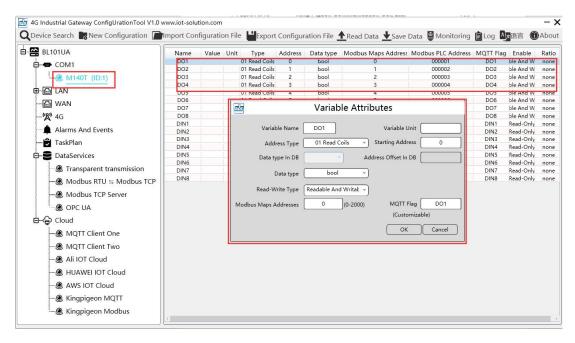

- (1) Double click "COM1" to enter configuration window
- (2) Mode Selection: Collection
- (3) Device Brand: Modbus; Device Model: Modbus RTU
- (4) Baud rate, Stop bit, Data Bit and Parity Bit will be set the same as that in M140T RS485 port
- (5) Click OK to confirm

Note: Click Save Data. Gateway will restart automatically. COM configuration will be valid after device restarting





### 5.2.1.2 Add M140T to COM Port




- (1) Click COM1, right click the mouse and click Add to enter configuration box
- (2) Set device name, for example, set M140T as device name
- (3) Input device modbus adress, for example, if M140T Modbus ID is 1, put 1
- (4) Select Type of data to be collected.
- (5) Click OK to confirm adding M140T
- (6) Click COM1 to view the added device M140T. If more devices to be added, perform the same procedures as above Step (1)-(5)

Note: Click Save Data. Gateway BL101 will restart automatically. After restarting, M140T is added successfully.



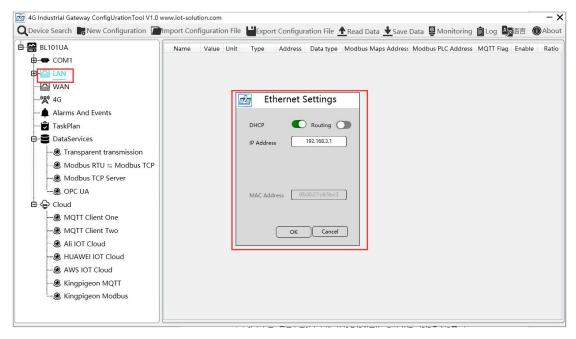
## 5.2.1.3 Add M140T Datapoints



- (1) Click M140T, move mouse cursor to the right box, right click mouse to enter datapoint configuration window
- (2) Set datapoint name, for example, DO1
- (3) Address Type: Select the address type to be supported by the function code of datapoint, for example, select 01 reading holding coil for M140T DO as it supports function code 01; select 02 read input coil for M140T DI as it supports function code 02
- (4) Data Type: Select datapoint data type. For example, select bool for M140T DI & DO as both are coil type.
- (5) Read-write Type: Automatic identifying read-write type according to Address Type
- (6) Variable Unit: Input any required unit
- (7) Starting Address: Input datapint register address, for example, DO1 register address in M140T is 0, input 0
- (8) Adding Qty: if consecutive addresses are collected, the same function code can multiply be collected
- (9) Modbus Mapping Address: Input the address where the collected datapoint is saved in BL101. It can be any address from 0-2000 but can't be repeated. For example, DO1 data is saved in register address 0 of BL101
- (10) MQTT Flag: can be any identification mark, but can't be repeated
- (11) Click OK to confirm

Note: After clicking OK to confirm the configuration, datapoints will appear in the box lik above picture. If more datapoints to be added, right click the box and click Add to enter






datapoint configuration box, repeat Step (2)-(11)

Note: Click Save Data. Gateway will restart automatically. After restarting, M140T datapoints are added successfully

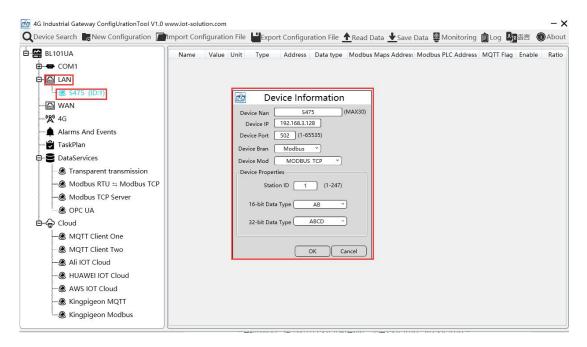
#### **5.2.1.4 LAN Port Configuration**

Note: Both WAN and LAN can collecting data from devices. Below example is the configuration of adding device S475 in LAN port. WAN port device configuration procedures are the same.



- (1) Double click LAN to enter configuration box
- (2) DHCP: enable auto IP distribution. Default is disabled. For examples, S475 has been set to auto retrieving IP, then LAN port must enable DHCP.
- (3) Routing: Enable network rounting function. Default is disabled. For example, S475 data will be collected without network requirement, then disable routing function
- (4) IP Address: defaut is 192.168.3.1, the IP addresses assigned to LAN port devices must be within the range. It can be changed according to requirement. For example, S475 is set to auto retrieving IP and the range is not limited, thus it's not necessary to change it.
- (5) MAC Addres: Input LAN port MAC address
- (6) Click OK to confirm it

Note: Click Save Data and Gateway will restart. Turn off the power of Gateway and restart it. After that LAN port configuration is done successfully


Note: LAN Port IP Address specifies the IP address arrange of LAN port device. If device IP address is not within the range, data can't be collected. Thus it's necessary to

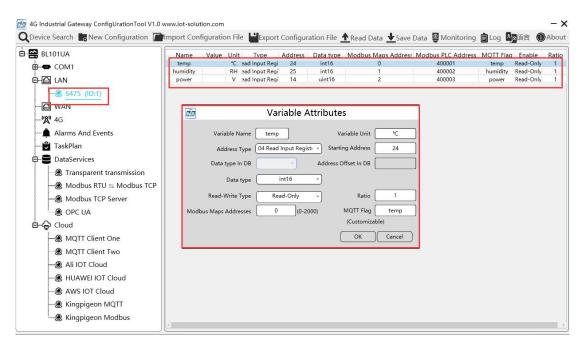


-BL101

change LAN port IP address according to requirement. IP Address change will not be effective until gateway is power off and powered on again

#### 5.2.1.5 Add LAN Port Device S475




- (1) Click LAN and right click mouse to enter device configuration box
- (2) Device Name: input the name of device to be added, S475
- (3) Device IP: input S475 IP address. For example, S475 is set to auto retrieving IP. Open S475 configuration software and view its IP(192.168.3.125). Thus input S475 IP 192.168.3.125.
- (4) Device Port: input LAN port device port. For example, S475 Modbus TCP port is 502. Thus put 502
- (5) Device Brand: Modbus; Device Model: Modbus TCP(BL101 collects S475 through LAN port through Modbus TCP protocol)
- (6) Station ID: 1, (S475 Modbus ID is 1)
- (7) Select Data Type. For example, S475 power source and temperature & humidity data is 16-bit AB type, 32-bit data is not collected. Thus select 16-bit AB type and keep 32-bit data type with default setting
- (8) Click OK to confirm the setting

Note: S475 device icon will appear after confirming the configuration. If more devices to be added, perform the same procdure as Step (1)-(8)

Note: Click Save Data and gateway will restart automatically. After restarting, device S475 is added successfully



#### **5.2.1.6 Add S475 Datapoint**



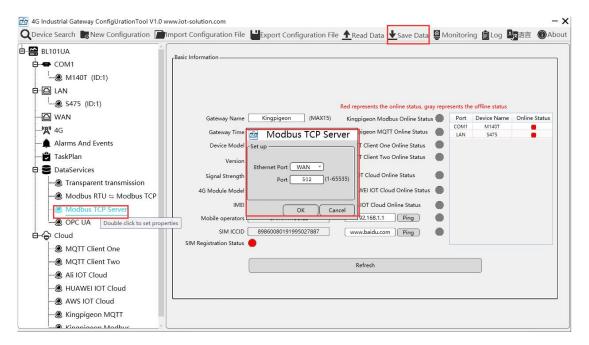
- (1) Click S475, move mouse cursor to the right box, right click the mouse and click Add to enter datapoint configuration box
- (2) Variable Name: Set the name of datapoint, for example, temperature
- (3) Address Type: S475 temperature supports function code 04, thus select 04 read input register
- (4) Data Type: S475 temperature is 16-bit signed numeric data, thus select int16
- (5) Read-Write Type: Automatic Identifying it according to Address Type
- (6) Variable Unit: °C(set any unit according to actual requirement)
- (7) Starting Address: 24 (Datapoint temperature register address in S475 is 24)
- (8) Adding Qty: If consecutive addresses to be collected, the same function code can collect it simultaneously.
- (9) Ratio: set the ratio to be multiplied or minified for uploading to cloud
- (10) Modbus Mapping Address: 0 (S475 temperature data is saved in register address 0 of BL101).

Modbus mapping address can be any from 0 to 2000 and it can't be repeated

- (11) MQTT Flag: temp. It can be any identification mark and can't be repeated.
- (12) Click OK to confirm.

Note: After confirming the configuration, datapoints will appear in the box like above picture. To add more datapoints, right click the box and click Add to enter configuration box. Perform the same procedure as Step (2)-(11)

Note: Click Save Data. Gateway will restart automatically. After device restarting, S475 datapoint is added successfully.



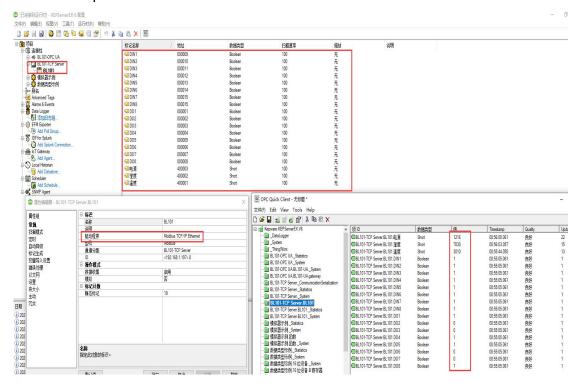

#### 5.2.2 M140T & S475 Data Uploading to Clouds

Below examples are the procedures to uploading M140T & S475 data to Modbus TCP Server, OPC UA, Alibaba Cloud, HUAWEI Cloud, AWS Cloud, King Pigeon Cloud via MQTT, King Pigeon Cloud via Modbus.

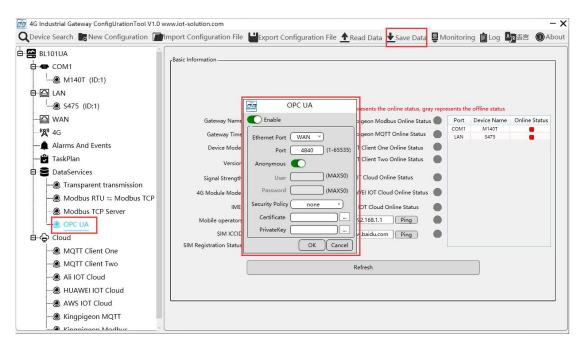
MQTT Client One and MQTT Client Two are for private cloud, supporting connecting with certificate. The settings are the same as King Pigeon Cloud connection via MQTT. Thus it will not be described here.

#### **5.2.2.1 Modbus TCP Server Configuration**




- (1) Doubel click Modbus TCP Server to enter configuration box
- (2) Ethernet Port: Select WAN (In this example, industrial router R40 is connected through WAN). Click WAN to view its IP address: 192.168.1.197
- (3) Port: This gateway is used as Modbus TCP Server monitoring port. Input any port within range 1-65535. For example, put 502
- (4) Click OK to confirm the setting of Modbus TCP Server.
- (5) Click Save Data. Gateway will restart automatically. After restarting, Modbus TCP Server configuration is done successfully.

#### 5.2.2.2 View Data with KEPServerEX 6


Gateway provides data as Modbus TCP server. Modbus TCP host computer will collect

-BL101

data from BL101, like SCADA, MES PCs. Below example is simulating KEPServerEX 6 as host computer to collect BL101 data.

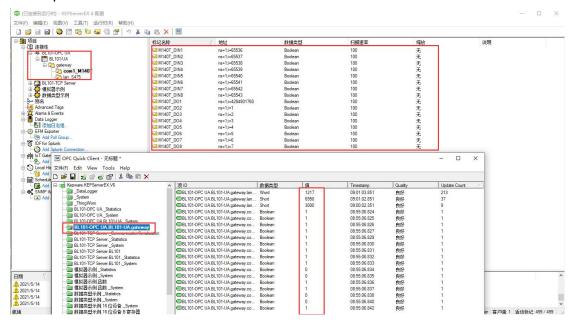


### 5.2.2.3 OPC UA Configuration



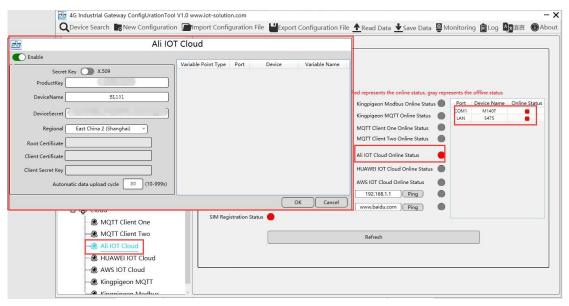
- (1) Double click OPC UA to enter configuration box
- (2) Click Enable to enable(green color) OPC UA. Default is disabled(gray color).
- (3) Ethernet Port: Select WAN (This example is connecting router R40 through WAN)




-BL101

Click WAN to view its IP address: 192.168.1.197

- (4) Port: OPC UA Port, default is 4840
- (5) Anonymous: If enabled, OPC UA can be connected without ID and password
- (6) User, Password: only to be set when anonymous is disabled
- (7) Security Policy: Select connection encryption policy(This example is connecting without encryption, thus select None)
- (8) Certificate, PrivateKey: This example is connecting without encryption, then it's not necessary to upload certificate and privatekey.
- (9) Click OK to confirm OPC UA configuration
- (10) Click Save Data. Gateway will restart automatically. Afer device restarting, OPC UA is configured successfully.

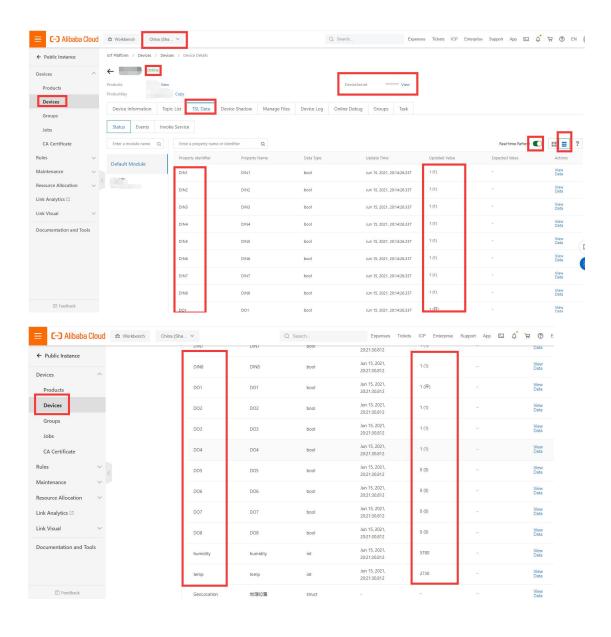

#### 5.2.2.4 View Data with KEPServerEX 6

BL101 provides data as OPC UA server. Use KEPServerEX 6 to view collected data as below picture:



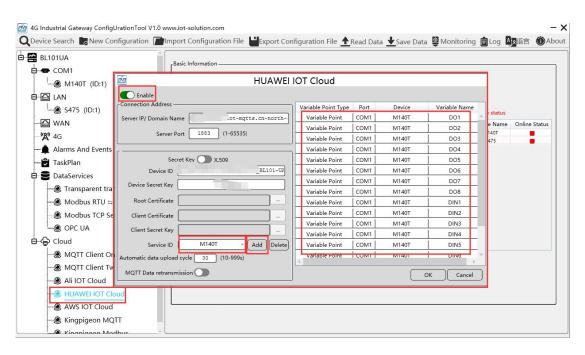


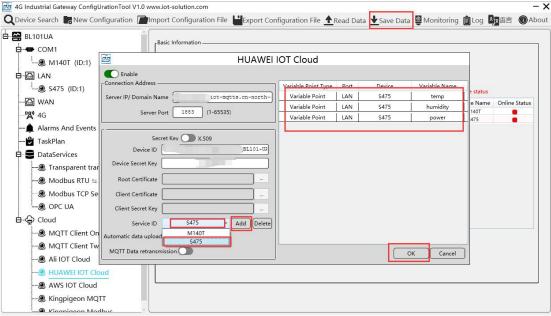
## 5.2.2.5 Alibaba Cloud Configuration




- (1) Double click Ali IOT Cloud to enter configuration box
- (2) Click Enable to enable(Green) Alibaba Cloud. Default is disabled (Gray )
- (3) Secret Key/X.509: Click it to move the button on the right for connecting with certificate. Default is connecting with Private Key with button on the left
- (4) Product Key: Input the same ProductKey as the one in Alibaba cloud
- (5) Device Name: Input the same device name as the one in Alibaba cloud
- (6) Device Secret: Input the same device secret as the one in Alibaba cloud
- (7) Region: Select Alibaba cloud region. Default is East China 2(Shanghai)
- (8) Root Certificate: Upload root certificate if connecting with certificate is enabled
- (9) Client Certificate: Upload client certificate if connecting with certificate is enabled
- (10) Client Secret Key: Upload client secret key if connecting with certificate is enabled
- (11) Automatic Data Upload Cycle: Cycle time of data uploading, default is 30s
- (12) Datapoint Uploading Selection: select the datapoints to be uploaded on the right box. In default the box is blank with all datapoints to be uploaded.
- (13) Click OK to confirm the setting
- (14) Click Save Data. Gateway will restart automatically and Alibaba cloud is enabled successfully. Open configuration software and login the device. Alibaba cloud connection status can be viewed from basic information. If indicator button is red, it means device is connected with Alibaba cloud. Slave device connection status can be viewed from the right box







### 5.2.2.6 View Data from Alibaba Cloud

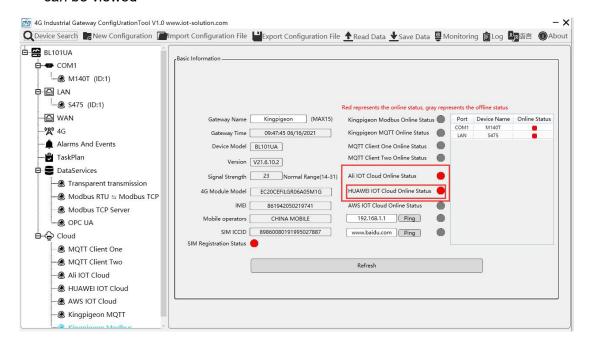




### 5.2.2.7 HUAWEI Cloud Configuration



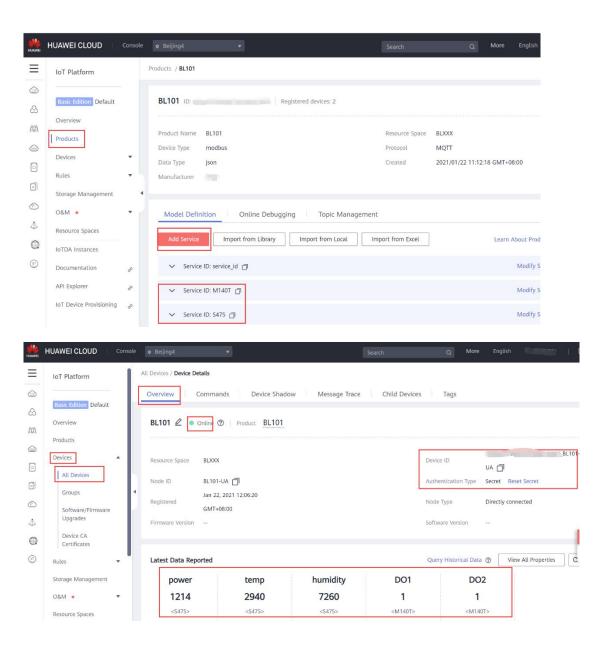



- (1) Double click HUAWEI IOT Cloud to enter configuration box
- (2) Click Enable to enable(green) HUAWEI Cloud. Default is disabled(gray)
- (3) Server IP/Domain Name: input HUAWEI Cloud connecting address(Login to HUAWEI Cloud, enter console, click overview to get server IP address)
- (4) Server Port: Default is 1883 for connecting with secrect key. If connecting with certificate is selected, server port is 8883
- (5) Secret Key/X.509: click it to move the button on the right to set connecting with certificate. In default the button is on the left with setting of connecting with secret

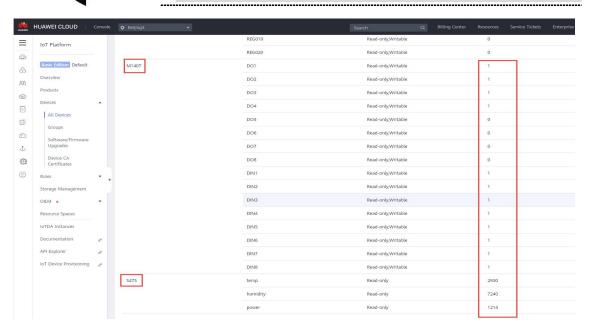


-BL101

key.


- (6) Device ID: set the same device ID as the one in HUAWEI Cloud
- (7) Device Secret Key: Set the same device secret key as the one in HUAWEI Cloud
- (8) Root Certificate: Upload root certificate if connecting with certificate is selected
- (9) Client Certificate: Upload client certificate if connecting with certificate is selected
- (10) Client Secret Key: Upload client secret key if connecting with certificate is selected.
- (11) Service ID: Input the same service ID as the one in HUAWEI Cloud. Mutiple service IDs can be set. This example inputs M140T & S475 service Ids
- (12) Automatic Data Upload Cycle: Cycle time of uploading data, default is 30s
- (13) MQTT Data Re-transmission: Click it to enable(green) MQTT offline data re-transmission once network resumes. Gray indicates disabled
- (14) Datapoint Uploading Selection: Right click the box to select datapoints for uploading. In default the right box is blank with all datapoints to be uploaded. For example, select Service ID M140T datapoints to upload. Right click the box to enter datapoint box, select M140T datapoint DO1 and hold the mouse to drag it to uploading points. Click OK to confirm and the datapoint will appear in the box. Select service ID S475, right click the box to enter datapoint box, select datapoint and click OK to confirm it.Click OK to confirm HUAWEI Cloud configuration
- (15) Click Save Data. Gateway will restart automatically and HUAWEI Cloud is enabled successfully. Open gateway configuration software and login device. HUAWEI Cloud connection status can be viewed from basic information. Red indicates device is connected with HUAWEI Cloud. On the right side, slave device connection status can be viewed








## 5.2.2.8 View Data from HUAWEI Cloud



-BL101



## 5.2.2.9 AWS Cloud Configuration

Multiple topics can be published in AWS cloud. The configuration procedure is the same as that of configuring multiple service Ids in HUAWEI Cloud. Below example is single topic with all datapoints to be published.



- (1) Double click AWS to enter configuration box
- (2) Click Enable to enable(green) AWS, default is disabled(gray)
- (3) Server IP/Domain Name: Input endpoint of connecting to AWS

  (See section Get the AWS IoT Endpoint in Appendix 1: AWS Cloud Configuration)
- (4) Server Port: 8883
- (5) Item Name: Set any item name as required
- (6) Client ID: Input your AWS Account ID (view from user information in AWS)



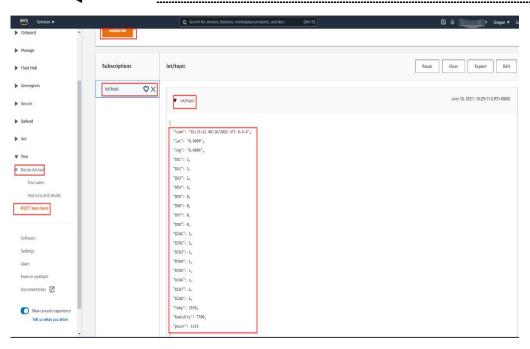
-BL101

- (7) Root Certificate: Download AmazonRootCA1.pem from AWS cloud platform and upload it to the device. See section <u>Get the IoT Endpoint</u>
- (8) Device Certificate: Download device certificate from AWS cloud platform and upload it to the device. See section <u>Create Resources in AWS IoT</u>
- (9) Device Private Key: Download device private key from AWS cloud platform and upload it to the device. See section <a href="Create Resources in AWS lot">Create Resources in AWS lot</a>
- (10) Publish Topic: Input the topic of rule created in AWS. It's the topic of MQTT message publishing. Click Add to set more publishing topics. Click Delete to delete selected topic. For example, login to AWS, click Act and click Rules to view the topic. It's iot/topic, thus input iot/topic

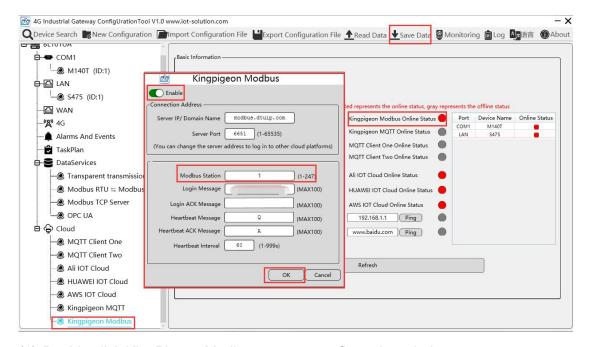
Rule query statement

The source of the messages you want to process with this rule.

SELECT \* FROM 'iot/topic'


- (11) Automatic Data Upload Cycle: Cycle time of uploading data, default is 30s.
- (12) Datapoint Uploading Selection: Select datapoint to upload in the right box. Default is blank box with all datapoints to be uploaded
- (13) Click OK to confirm AWS configuration
- (14) Click Save Data. Gateway will restart and AWS is enabled successfully. Open configuration software and login the device. AWS connection status can be viewed from basic information. Red light indicates AWS is connected. Slave device connection status can be viewed from the right box

#### 5.2.2.10 View Data from AWS


Login to AWS IoT Console (console.aws.amazon.com/iot), click **Test**, select **MQTT Test Client** and subscribe to the topic "iot/topic" as configured in the device. BL101 published messages can be viewed in Topic box

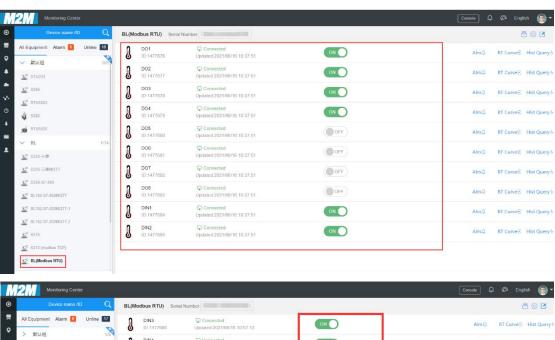


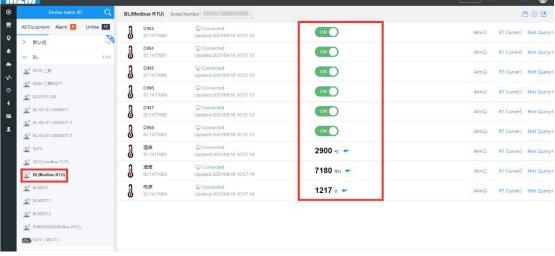
-BL101



### 5.2.2.11 King Pigeon Cloud via Modbus Configuration

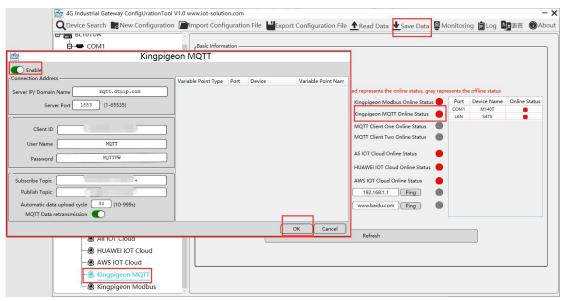



- (1) Double click KingPigeon Modbus to enter configuration window
- (2) Click Enable to enable(green) King Pigeon cloud via Modbus. Default is disabled (Gray)
- (3) Server IP/Domain Name: modbus.dtuip.com. (Automatic filling in default)
- (4) Server Port: 6651 (Automatic filling in default)
- (5) Modbus Station: Set BL101 gateway Modbus communication address
- (6) Login Message: Input device serial number issued by King Pigeon.




-BL101

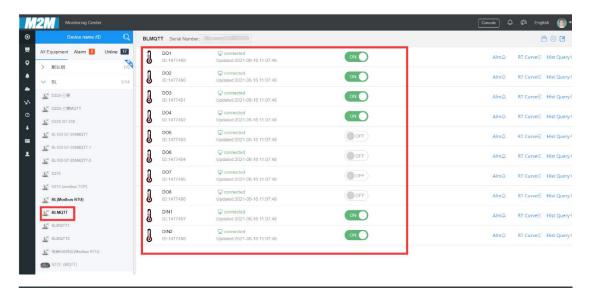
- (7) Login ACK Message: Not necessary for King Pigeon cloud connection
- (8) Heartbeat Message: Q (Automatic filling in default)
- (9) Heartbeat ACK Message: A(Automatic filling in default)
- (10) Heartbeat Interval: Set cycle time of sending Heartbeat message. Default is 60s
- (11) Click OK to confirm the configuration.
- (12) Click Save Data. Gateway will restart and King Pigeon Cloud via Modbus is enabled successfully. Open configuration software and login device. King Pigeon cloud via Modbus connection status can be viewed from basic information. Red indicates device is connected King Pigeon cloud via Modbus. Slave devices connection status can be viewed from the right box.

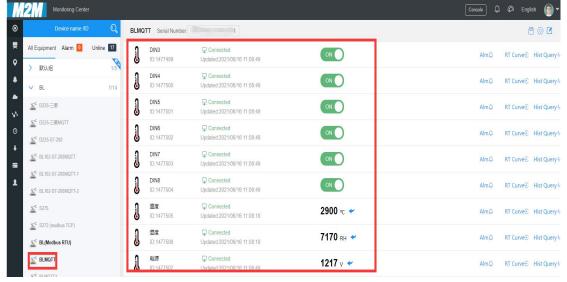

#### 5.2.2.12 View Data from King Pigeon Cloud via Modbus








### 5.2.2.13 King Pigeon Cloud via MQTT Configuration




- (1) Double click King Pigeon MQTT to enter configuration box
- (2) Click Enable to enable(green) King Pigeon cloud connection via MQTT. Default is disabled(gray)
- (3) Server IP/Domain Name: mgtt.dtuip.com(Automatic filling in default)
- (4) Server Port: 1883 (Automatic filling in default)
- (5) Client ID: Input device serial number issued by King Pigeon
- (6) User Name: MQTT (Automatic filling in default)
- (7) Password: MQTTPW(Automatic filling in default)
- (8) Subscribe Topic: Input device serial number/+ issued by King Pigeon
- (9) Publish Topic: Input device serial number issued by King Pigeon.
- (10) Automatic Data Upload Cycle: Cycle time of uploading data. In default it's 30s
- (11) MQTT Data Re-transmission: Click it to enable(green) offline data re-transmission once network resumes.
- (12) Datapoint Uploading Selection: Select the datapoint to upload in the right box. In default it's blank with all datapoints to be uploaded
- (13) Click OK to confirm King Pigeon Cloud via MQTT configuration
- (14) Click Save Data. Gateway will restart and King Pigeon Cloud via MQTT is configured successfully. Open configuration software and login the device. King Pigeon Cloud connection status via MQTT can be viewed from basic information. Red indicates King Pigeon cloud via MQTT is connected. Slave device connection status can be viewed from the right box.



### 5.2.2.14 View Data from King Pigeon Cloud via MQTT





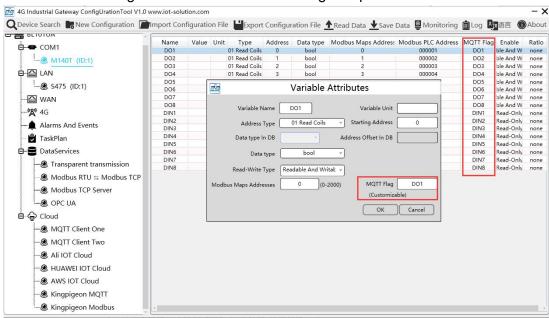
#### 5.2.2.15 King Pigeon Cloud MQTT Message Format

MQTT Client One, MQTT Client Two and King Pigeon Cloud MQTT data formats are the same. See below:

(1) Valid Load Data Format in device Publishing messages

```
Publish Topic: Serial Number (Configured publish topic)
  {
    "sensorDatas": [
        {
              //Boolean value
             "flag": "REG001",
                                //Read-write identification mark
```

Page **75 of 79** 




-BL101

```
"switcher": 0 //Data Type and Value
        },
             //Numeric Type
             "flag": "REG005", //Read-Write identification mark
             "value": 3 //Data Type and Value
        }
    ],
   "state":"alarm", //Alarm mark(Set Alarm Event in configuration software. Once
alarm is trigger, this mark will appear. It's not included in scheduled automatically
uploaded data)
   "state": "recovery", //Alarm recovery mark (Only appear when there's alarm
recovery. It's not included in scheduled automatically uploaded data)
    "time": "1622700769", //Time mark, it's time stamp of data uploading
    "addTime": "2021-06-03 06:12:49" //Time mark, it's time of device data uploading
    "retransmit":"enable" //Retransmission mark, MQTT historical data (Only appear
when there's historical data retransmission. It's not included in scheduled
automatically uploaded data)
  }
```

Note:

//Read-Wrie Mark: character is "flag", followed by " Datapoint MQTT flag", it's the MQTT mark set in configuration software when adding datapoint.



//Data Type and Value:

1) Boolean data: character is "switcher", followed by "0" or "1"(0 represents open, 1 represents close)



-BL101

2) Numeric Data: character is "value", followed by actual value

//Alarm, Recover mark, character is "state", followed by "alarm" or "recovery"(alarm represents alarm data, recovery represents alarm recovery data)

//Time mark: character is "time", followed by actually data uploading timestamp //Time mark, character is "addtime", followed by "gateway time"

//Retransmission mark: character is "retransmit", followed by "enable"

Offline collected data will be temporarily saved in gateway device. Once network resmues, the data will be retransmitted. Use "retransmit" mark for historical data (MQTT Data Retransmission must be enabled in configuration software)

#### (2) Valid Load Data Format in device Subscribing messages

Subscribe Topic: Serial Number/+ (Subscribe topic set in configuration software) (King Pigeon cloud message publishing topic is "serial number/sensor ID", thus wildcard "/+" must be added for device Subscribing Topic so that cloud can publishing data for controlling)

#### Note:

//cloud sensor ID: character is "sensorsID", followed by ID (automatically generated by cloud. Not necessary if it's self-built cloud)

//Data Type and Value:

- Boolean Data: character is "switcher", followed by "0" or "1"
   (0 represents open, 1 represents close)
- 2) Numeric Data: character is "value", followed by "actual value" //Read-Write Mark: character is "flag", followed by "datapoint MQTT flag" //Cloud Downlink Message Mark: character is "down", followed by "down", representing cloud downlink data.



-BL101

### 6 Firmware Upgrading

Please contact King Pigeon if it's necessary to upgrade firmware for any new requirements

### 7 Warranty Term

- 1) Warranty period is 1 year from the date of purchase. If any quality issues within warranty period, it will be repaired for free.
- 2) Device fault caused by wrong operation is beyond warranty.

#### **8 Technical Support**

King Pigeon Communication Co., Ltd.

Telephone: 0086-755-29451836 Website: www.iot-solution.com

### 9 Appendix 1: AWS Cloud Configuration

### 9.1 Setup your AWS account and Permissions

Refer to the instructions at <u>Set up your AWS Account</u>. Follow the steps outlined in these sections to create your account and a user and get started:

- Sign up for an AWS account and
- Create a user and grant permissions.
- Open the AWS IoT console

Pay special attention to the Notes.

#### 9.2 Create Resources in AWS IoT

Refer to the instructions at <u>Create AWS IoT Resources</u>. Follow the steps outlined in these sections to provision resources for your device:



-BL101

- Create an AWS IoT Policy
- Create a thing object

Pay special attention to the Notes.

### 9.3 Get the AWS IoT Endpoint

Use the AWS IoT console at console.aws.amazon.com/iot. In the left panel, choose **Settings**. The endpoint is listed under **Device data endpoint** 

#### 9.4 Get the AWS Root CA

https://www.amazontrust.com/repository/AmazonRootCA1.pem